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ABSTRACT
This paper presents a graph-based method to weight med-
ical concepts in documents for the purposes of information
retrieval. Medical concepts are extracted from free-text doc-
uments using a state-of-the-art technique that maps n-grams
to concepts from the SNOMED CT medical ontology. In our
graph-based concept representation, concepts are vertices in
a graph built from a document, edges represent associations
between concepts. This representation naturally captures
dependencies between concepts, an important requirement
for interpreting medical text, and a feature lacking in bag-
of-words representations.

We apply existing graph-based term weighting methods
to weight medical concepts. Using concepts rather than
terms addresses vocabulary mismatch as well as encapsu-
lates terms belonging to a single medical entity into a sin-
gle concept. In addition, we further extend previous graph-
based approaches by injecting domain knowledge that esti-
mates the importance of a concept within the global medical
domain.

Retrieval experiments on the TREC Medical Records col-
lection show our method outperforms both term and concept
baselines. More generally, this work provides a means of
integrating background knowledge contained in medical on-
tologies into data-driven information retrieval approaches.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: H.3.3 Infor-
mation Search and Retrieval
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1. INTRODUCTION
Most information retrieval (IR) models represent docu-

ments as bag-of-words, that is, the representation does not
consider word order or term dependence. However, alter-
native representations, such as graph-based representations
have shown that taking term dependence into account can
improve retrieval performance [3]. In these approaches a
document is modelled as a graph, where terms are vertices
and edges represent relations between terms. The impor-
tance of a term within a document is proportional to its
connectedness to other terms and can be estimated with
graph-based measures such as the PageRank algorithm [11].

At the same time there is an increasing body of research
within the IR community focused on systems for medical
information retrieval [6]. The nature of medical natural lan-
guage presents some specific challenges — vocabulary mis-
match is more prevalent and there is greater interdependence
between terms (e.g., between diseases and treatments or or-
ganisms and diseases) [12, 7]. This motivates the use of
alternative IR models that incorporate more semantic ap-
proaches to capture the innate dependencies between terms
in medical natural language.

In this paper we apply existing graph-based term weight-
ing approaches to medical IR. Rather than applying these
approaches to the original term representation of documents,
we first convert the documents into medical concepts defined
by the SNOMED CT medical ontology. The motivation for
this conversion is that concept-based representations have
a proven track record in medical IR [19, 9, 7]. Concepts
(the counterpart of terms in this context) are weighted ac-
cording to their connectedness within the graph using an
adapted PageRank algorithm. In addition, we propose a
novel background weighting method that incorporates the
importance of the concept within the global medical domain
(rather than just a single corpus); this is done by injecting
domain knowledge from the SNOMED CT ontology into the
weighting function. A consequence of this method is that a
large number of query concepts are actually excluded, which
proves effective as a query concept selection method.

The remainder of the paper is organised as follows: Sec-
tion 2 provides the background on graph-based IR and concept-
based representations for medical IR. Section 3 details our
graph-based concept-weighting model, including the injec-
tion of domain knowledge from the SNOMED CT ontology
in the weighting function. Section 4 describes the evalua-
tion methodology using the TREC Medical Record Track
and presents results. Section 5 discusses our findings and
considers future work.



2. BACKGROUND
This section provides (i) background and related work on

concept-based representations of documents for medical IR;
and (ii) graph-based term weighting methods for informa-
tion retrieval. The following section will present our model
which combines these two approaches and extensions by the
injection of domain knowledge.

2.1 A ‘Bag-of-Concepts’ Model for Medical IR
Broadly, concept-based IR aims to make use of external

knowledge sources (such as thesauri or ontologies) to pro-
vide additional background knowledge and context that may
not be explicit in a document collection and users’ queries.
Performance in concept-based IR is highly dependent on
the specific domain model or ontology used. General ap-
plications (those that utilise WordNet or Open Directory)
struggle to outperform keyword-based systems [16, 13, 5].
However, biomedical applications — which use domain spe-
cific ontologies — do demonstrate consistent improvements
[19, 9, 7]. Generally, concept-based approaches fall into two
categories: (i) Those that maintain the original term repre-
sentation of documents and only utilise concept-based rep-
resentations (typically of the query) at retrieval time. The
query expansion method of Liu et al. [9] is an example of
this. (ii) Approaches that translate the original terms in a
document into concepts prior to indexing. Zhou et al. [19],
Egozi et al. [5] and Koopman et al. [7] take this approach,
thereby utilising a ‘bag-of-concepts’ representation of a doc-
ument; they demonstrate significant improvements over a
term baseline. This latter approach is the one we adopt to
develop a graph-based concept weighting model. Therefore,
we provide some additional details of the ‘bag-of-concepts’
model below.

The conversion of text to concepts is achieved by a nat-
ural language processing system called MetaMap [1], devel-
oped by the U.S. National Library of Medicine. MetaMap
analyses biomedical free-text and identifies concepts belong-
ing to Unified Medical Language System (UMLS). MetaMap
is widely adopted in clinical NLP [10] and IR [6, 9]. Us-
ing MetaMap, both queries and documents are converted,
hence the ‘bag-of-concepts’ representation. For example,
the text ‘vascular dementia’ found in a document would
be replaced with the UMLS concept id C0011269; Koopman
et al. [7] provide further details of this process.

As with the ‘bag-of-words’ representation, the ‘bag-of-
concepts’ does not incorporate the innate dependencies be-
tween concepts that exist in medical natural language. An
alternative to bag-of-words representations are graph-based
representations of documents, which aim to represent re-
lations between terms in a document as edges in a docu-
ment graph [3]. We now consider previous graph-based ap-
proaches with an eye for how they might be applied to our
bag-of-concepts representation, thus capturing the innate re-
lations that may exist between medical concepts.

2.2 Graph-based Term Weighting
Graph-based models have been applied in information re-

trieval, generally as part of connectionist approaches [4].
Shifting weights between vertices in a graph is the basis for
the Inference Network model of Turtle & Croft [14], and the
basis for the InQuery language used as part of the popular

search engine Lemur1. Graphs provide a convenient means
of representing information for IR applications — the prop-
agated learning and search properties of a graph provide
a powerful means of identifying relevant information items
[3] (be they terms or documents). Graph-based algorithms,
such as the popular PageRank algorithm [11] are examples
of graph theoretic properties that can be utilised very effec-
tively in a information retrieval scenario.

Blanco & Lioma [3] developed a graph-based term weight-
ing model that represents each document as a graph: ver-
tices are terms and edges are relations between terms. Rela-
tions may be simple co-occurrence relations within a context
window, or more complex grammatical relations. The im-
portance of a term within a document can then be estimated
by the number of related terms and their importance, much
in the same way PageRank estimates the importance of a
page via the pages that link to it.

We hypothesise that Blanco’s model adapted to a con-
cept representation of documents may be a powerful tool
for medical IR as it would capture the dependencies be-
tween concepts found in medical free-text. We therefore in-
tegrate Blanco & Lioma graph-based term-weighting model
into previous concept-based approaches to medical IR, this
is done in the next section. The remainder of this section
provides an explanation of the original graph-based model
and provides an example of its application on an exerpt of
medical text.

In Blanco & Lioma’s graph-based term weighting model, a
term i in a document is represented by the vertex vi. A ver-
tex is connected to other vertices, V(vi) denoting the set of
vertices connected to vi. The weight of vi within a document
is initially set to 1 and the following PageRank function is
run for several iterations

S(vi) = (1− φ) + φ ∗
∑

vj∈V(vi)

S(vj)

|V(vj)|
(0 ≤ φ ≤ 1) (1)

where φ is the damping factor which controls“vote recycling”
from the original PageRank algorithm [11]. Blanco & Lioma
showed that only a small number of interations (< 50) is
required to obtain convergence [3]. Edges between vertices
are based on relations between terms. Term relations can be
implemented as the co-occurrence between two terms within
a set context window N2.

Next, we present an example of the graph produced when
this method is applied to a small sample of medical text;
this is done to highlight some of the characteristics of graph-
based representations. Firstly, an example medical text doc-
ument is shown in Figure 1(a). From this sample text Fig-
ure 1(b) shows the corresponding graph built using a con-
text window of N = 3 terms in total. The vertex scoring
algorithm of Equation 1 is applied to each vertex and the
ten terms with the highest score are highlighted. These in-
clude the terms dental, patient and a number of temporal
terms (history, past, time, recent). Those terms with
higher scores provide an indication of the important terms
appearing in this document. The next section shows how
this information is included into the retrieval method.

1Lemur Project, http://www.lemurproject.org.
2Other relations may consider grammatical modifiers or
part-of-speech information.



"The patient is a 32-year-old female with a past medical history

significant for a prior history of peptic ulcer disease who presents with a

complaint of right lower dental pain. The patient states that she was started

on recent dental procedures, on a right lower molar, over the past few

months, including a recent root canal, at which time she had a temporary

filling placed."

(a) Example medical text document.
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(b) Term graph of example medical text document; stop words removed.

Figure 1: Resulting term graph 1(b) built from the above medical document 1(a). Built using co-occurrence
window N = 3. Bolded nodes indicate the 10 terms with greatest score within the document (according to
Equation 1).

2.2.1 Retrieval Function
The graph-based vertex score of Equation 1 is now inte-

grated into a retrieval function. Typical retrieval functions
estimate the relevance between a document and a query as

R(d, q) ≈
∑
t∈q

w(t, q) ∗ w(t, d) (2)

where w(t, q) is the weight of the term in query, often uni-
form for ad-hoc queries, thus w(t, q) = 1. The second com-
ponent, w(t, d), is the weight of the term in the document.
The graph-based score provides a means of estimating w(t, d)

w(t, d) = idf(t) ∗ S(vi) (3)

where S(vi) is the vertex score from Equation 1 and idf(t)
is the inverse document frequency of the term. The retrieval
function from Equation 2 can be reexpressed as

R(d, q) =
∑
t∈q

w(t, d) (4)

In the next section we apply the graph-based term weigh-
ing method to the use of concept-based representations and
later show how doing so improves the performance of a med-
ical IR system.

3. GRAPH-BASED CONCEPT WEIGHTING
Building a graph of concepts is done in the same way as

building a graph of terms: a context window of fixed length
is moved across a document, concepts which co-occur within
the context window are connected with an edge in the graph
of concepts. Although the process of creating the graph for
terms and concepts is the same, the resulting graph itself
can differ significantly for the concept representation. To
demonstrate this we revisit the example text document and
resulting graph from Figure 1. Converting the example text
document to concepts and constructing the graph results in
the graph illustrated in Figure 2. The concepts are identified
by their concept id in both the document and the graph, but
we also include their description in parentheses to make the
example readable. The PageRank function from Equation 1
is applied and the 10 vertices with the highest scores are
highlighted in the figure.

There are many more concepts in the concept graph than
terms in the term graph. This is because a single term
can map to multiple concepts, for example, the term HIV
maps to three concepts: C0019682 HIV Virus, C0019693

HIV (Disease) and C0019699 HIV+ finding. Alternatively,
multiple terms can map to a single concept, for example,
the phrase Peptic ulcer disease maps to the single concept
C0030920.
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Figure 2: Resulting concept graph built from the medical document from Figure 1(a). Built using co-
occurrence window N = 3. Bolded nodes indicate the 10 concepts with greatest score within the document
(according to Equation 1).

Comparing the term graph from Figure 1 and the concept
graph from Figure 2 we observe that both contain similar
high score items — dental appears in both, as does pa-

tient and temporal items like history, year, recent and
time. However the one major difference is the concept Pep-
tic Ulcer, which appears in the concept graph, but not in
the term graph. The reason for this is twofold: firstly, when
converting to concepts the n-gram peptic ulcer from the
original text maps to the single concept c0030920; secondly,
when represented in graph form the concept is highly con-
nected and therefore receives a high score. Peptic Ulcer’s
high score reveals it as an important concept within the
concept graph (and therefore this document), a feature not
present in the term graph.

3.1 Concept Retrieval Function
Applying the weighting and retrieval functions to concepts

we simply substitute terms for concepts. Thus, the origi-
nal term weighting function from Equation 3 is updated to
weight a concept c within document dc as

w(c, dc) = idf(c) ∗ S(vi) (5)

The original retrieval function is updated to

R(dc, qc) =
∑
c∈qc

w(c, dc) (6)

where dc is the document converted to concepts and qc is
query converted to concepts.

3.2 Injecting Domain Knowledge into the Weight-
ing Function

The health informatics community has invested consider-
ably in the development of medical domain knowledge re-
sources, for example, the SNOMED CT ontology. These
resources describe in great detail3 the coverage of topics
and terminology used within the medical domain. Incor-
poration of this large external resource into an IR system is
not a trivial task. However, if effective integration can be
achieved the IR system could potentially make far more in-
formed judgements regarding relevance when presented with
a user’s query. Towards this goal, this section describes a
method for injecting domain knowledge into the weighting
function.

The concepts in our concept-based graph model are taken
from the SNOMED CT medical ontology. SNOMED CT
also defines explicit relationships between concepts, for ex-
ample the HIV virus concept is related to the AIDS disease
concept. SNOMED CT therefore can also be modelled as a
graph, with concepts as vertices and relationships as edges.
A concept’s number of edges can be an indicator of the con-
cept’s importance within the medical domain. Consider the
simple example for the concept Asthma, which is related to
50 different other concepts, a subset of which are shown in
Figure 3.

Concepts important to the medical domain, such as dis-
eases and treatments, are carefully modelled by the designers
of SNOMED CT and contain detailed relationships to other
concepts. In contrast, concepts that are peripheral to the
medical domain are only broadly defined and typically con-
tain only a small number of relationships. In contrast to the
Asthma example, SNOMED CT defines the concept Dog,

3SNOMED CT contains approximately 311,000 concepts
and 1,360,000 relationships between concepts.
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Labored breathing

Respiration Disorders

...

Figure 3: The concept Asthma is related to 50 other
concepts in the SNOMED CT ontology, an indica-
tion of its importance within the medical domain.

which is related to only 5 other concepts — an indication it
may be of lesser importance.

Identifying important concepts within the medical domain
may provide an indication of what users may be interested
in when searching medical documents. We would like to
include this indication of importance within the medical do-
main into our graph-based concepts weighting model. Cur-
rently, the concept weighting scheme is based on the number
of related concepts within the graph built for a single docu-
ment. This method captures the importance of the concept
within a document, but does not consider the importance
of the concept within the wider medical domain. The origi-
nal concept weight can be adjusted by the number of related
concepts within the SNOMED CT ontology, representing its
‘background’ importance within the medical domain. The
weighting function w(c, dc) of Equation 5 can then be aug-
mented as

w(c, dc) = idf(c) ∗ S(vi) ∗ log(|Vs(c)|) (7)

where Vs(c) is the set of edges adjacent to concept c in the
SNOMED CT ontology graph. A concept’s weight is there-
fore adjusted based on its background weight within the
medical domain, similar to the way background smoothing
is applied in language models based on a term’s frequency
within the corpus. However, the weighting using SNOMED
CT is independent of the document corpus and utilises a
global measure of importance for the concept within the
medical domain.

4. EMPIRICAL EVALUATION
This section details our experimental setup and evaluation

methodology; results are presented in the next section.

4.1 Test Collection
As the test collection we use the TREC 2011 Medical

Records Track, a collection of 100,866 clinical record doc-
uments from U.S. hospitals. Documents belonging to a sin-
gle patient’s admission were treated as sub-documents and
were concatenated together into a single document called a
patient visit document. This was done because the unit of
retrieval in TREC 2011 MedTrack was a patient visit rather

Corpus #Docs Avg. doc. len. #Vocab.

MedTrack:

Terms 17,198∗ 2338 terms/doc 218,574

Concepts 17,198∗ 6066 concepts/doc 54,143

∗100,866 original reports collapsed to 17,198 patient visit
documents.

Table 1: Collection statistics for the TREC 2011
MedTrack corpus of clinical patient records. Statis-
tics are provided for the original term corpus and
subsequent corpus after conversion to concepts us-
ing the information extraction tool MetaMap.

than individual report. Collapsing reports to patient vis-
its was a common practise among many TREC MedTrack
participants [17]. The corpus then contained 17,198 patient
visit documents.

The original textual documents were translated into con-
cept identifiers using the information extraction system MetaMap,
as outlined in Section 2.14. Statistics for both the term and
concept corpora are provided in Table 1.

4.2 Baselines for Comparison
We implement a number of baselines for comparison against

our graph-based concept weighting model:

terms-tfidf: We consider a state-of-the-art bag-of-words model.
In initial experiments a tf-idf implementation actually
demonstrated the best performance over BM25 and a
Language Model with Dirichlet smoothing. Thus, we
adopt as a baseline the Lemur variant implementation
of tf-idf (which uses the Okapi TF formula [18]; param-
eterising document length normalisation with b and
term frequency weighting with k1). This baseline was
tuned by selecting the best performing (oracle) pair of
parameters values for b and k1 from a complete sweep
of the parameter space in the ranges b = [0, . . . , 1]
(with increments of 0.1) and k1 = [0, . . . , 40] (with in-
crements of 1). The best values were b = 0.45 and
k1 = 3.7. This strong tf-idf tuned baseline is denoted
terms-tfidf.

terms-graph: We implemented Blanco & Lioma’s graph-based
weighting method and apply it to terms. The damp-
ing factor parameter φ from Equation 1 is set to 0.85
according to the findings of Blanco & Lioma [3]. Simi-
larly, the number of iterations and the context window
size were set at 20 and 10 respectively, in line with
Blanco & Lioma. This baseline is denoted terms-graph.

concepts-tfidf: We implement a bag-of-concepts model as
the same tf-idf model as for terms-tfidf, but on the con-
cepts corpus (as opposed to the term corpus). Param-
eters for this baseline were tuned in the same manner
as terms-tfidf; b = 0.35, k1 = 5.0. This tuned baseline
is denoted concepts-tfidf.

4Koopman et al. found that mapping to the SNOMED CT
subset of UMLS provided the best representation, we also
adopt this approach [7].



4.3 Graph-based Concept Weighting Models

concepts-graph: We apply the graph-based weighting method
to concepts, as described in Section 3.1. We use the
same parameter settings as terms-graph for φ, iter-
ations and context window. This model is denoted
concepts-graph.

concepts-graph-snomed: Background information, derived
from the SNOMED CT ontology, is injected into the
concepts-graph weighting as described in Section 3.2,
maintaining the same parameter settings. This model
is denoted concepts-graph-snomed.

4.4 Evaluation Topics & Metrics
Evaluation was performed using the 34 topics from the

TREC MedTrack’11 collection. Retrieval results were eval-
uated using Bpref and Precision @ 10 in accordance with the
measures from TREC MedTrack’11. Bpref is regarded as the
primary metric by MedTrack’11 and was used as the objec-
tive measure to tune the baselines terms-tfidf and concepts-
tfidf.

4.5 Results
Retrieval results of the three baselines and the two graph-

based concept methods are reported in Table 2.

Run Bpref Prec@10

terms-tfidf 0.4722 0.4882

concepts-tfidf 0.4993 0.5176

terms-graph 0.4393 0.4882

concepts-graph 0.5050 (+15%) 0.5441 (+11%)

concepts-graph-snomed 0.5245 (+19%) 0.5559 (+14%)

Table 2: Retrieval results on TREC MedTrack’11
using both term and concept representations, and
after applying graph-based weighting and injection
of domain knowledge. Percentage improvement
shown over terms-graph.

Comparing the term and concepts runs (terms-tfidf vs.
concepts-tfidf), the concept based representation demonstrates
improved performance. Comparing the effect of the graph-
based weighting on terms (terms-tfidf and terms-graph) we
actually observed degraded performance. However, when
concepts are used to construct the graph (concepts-tfidf and
concepts-graph), performance improved. The injection of do-
main knowledge using SNOMED CT (concepts-graph-snomed)
provided additional improvements over concepts-graph in both
bpref and precision. Analysis of results is presented in the
next section.

Statistical significance using paired t-test was not found
for any of the above results. The test collection contained
only 34 query topics; van Rijsbergen comments that paired
t-test may not reliably indicate statistical significance with
small query sets [15]. Ideally, a larger query set or additional
test collections would have been used; however, the medical
domain does not currently have the diversity of evaluation
resources available to other domains.

5. DISCUSSION
First, we consider the effect of using a bag-of-concepts

rather than a bag-of-words representation — comparing the
concepts-tfidf and terms-tfidf baselines. The use of a concept-
based representation provides a 5% increase in bpref and 6%
increase in P@10. This result is inline with previous concept-
based approaches [7] and is encouraging for applying graph-
based weighting to concept-based representations.

The effect of Blanco & Lioma’s graph-based term weight-
ing is now considered. When comparing the terms-tfidf and
terms-graph baselines we observe that the use of graph weight-
ing actually degraded retrieval performance by 6%. This re-
sult is contrary to the findings of Blanco & Lioma [3], who
report improvements using the graph model on a number of
test collections (over both tf-idf and BM25 baselines). Their
corpora were newswire articles, web and blog crawls. The
graph-based term weighting method may not be as suited
to the peculiarities of medical IR; further analysis would be
required to fully understand the reason for this.

In contrast to using terms, applying graph-based weight-
ing to concepts does improve performance. Our concepts-
graph model shows improvements over both the terms-tfidf
and concepts-tfidf baselines, especially in precision, which
exhibits an 11% improvement over the tuned terms-tfidf base-
line and a 5% improvement over the tuned concept-tfidf base-
line. Graph-based weighting is effective when using con-
cepts, but not so when using terms. We hypothesise that
this may be due to the fact that the concept representation
encapsulates important medical n-grams as a single vertex
in the graph (such as the Peptic Ulcer example from the con-
cept graph of Figure 2). In contrast, the term-based graph
does not encode these n-grams: instead, the two terms are
split as separate vertices, both receiving a lower weight.

Overall, both the graph-based concept weighting methods
(concepts-graph and concepts-graph-snomed), outperform the
other three baselines in both bpref and precision @ 10. Al-
though the small topic set makes statistical significance judge-
ments difficult, we can provide some insights by considering
how many queries were improved (and by how much) when
using our concept graph method. Figure 5 show the change
in bpref for each query using the concept-graph-snomed model
when compare against the terms-graph baseline; topics or-
dered in decreasing change in bpref. The figure shows what
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Figure 4: Per-query change in bpref for concept-
graph-snomed against terms-graph baseline.
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Figure 5: Histogram showing #queries exhibiting
change in bpref over term-graph for both concept
graph models. Results show concepts-graph-snomed
tends to make more small improvement to many
queries — an indicator of increased robustness.

a significance test should show — that change is seen in most
queries, and change is for the better in most cases.

When comparing concept-graph-snomed to concept-graph,
the injection of domain knowledge using SNOMED CT into
the weighting provides an improvement in both bpref (4%)
and precision (2%). Although the overall performance af-
ter injecting domain knowledge is not considerably higher,
the injection method does provide some additional robust-
ness across the query set. To illustrate this, Figure 5 shows
the number of queries exhibiting change in bpref over the
terms-graph baseline for both concept graph models. The
histogram shows that concept-graph-snomed tends to make
small variations (gains and losses) to a larger number of
queries, whereas the concepts-graph has larger variations on
a smaller number of queries. The former (small gains on
many queries) indicates increased robustness and is more
desirable for the model’s general applicability. Both graph
concept models do have the promising potential to benefit
some queries substantially. Further study is need to enhance
this aspect.

We now consider some interesting characteristics of the in-
jection of domain knowledge. From Equation 7, the weight-
ing of concept c is dependent on the logarithm of the number
of edges adjacent to c in the SNOMED CT graph. Note, that
when a concept has only one adjacent edge in the SNOMED
CT graph, then the weight wb of query concept c for doc-
ument d is zero (log |V(c)| = log 1 = 0). In practice, this
means that query concepts that contain only one edge in
SNOMED CT are essentially ignored (their weight always
being 0). Intuitively, this seems an undesirable characteris-
tic that could lead to significant degradation in performance.
To understand the extend of this characteristic and how it
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Figure 6: The change in bpref when excluding query
concepts with only one edge in the SNOMED CT
graph. x-axis indicates the percentage of concepts
for a given query where |Vs(c)| = 1 (and are therefore
excluded).

actually affects performance, we first consider how many
queries contain concepts with only one edge in SNOMED
CT (and therefore had scores of 0). The 34 test queries con-
tained 448 concepts in total; of these a total of 127 (28%)
had only one edge in the SNOMED CT graph, and were
therefore ignored. Intuitively, ignoring so many concepts in
the topic set would have a drastic effect on retrieval perfor-
mance; however empirical results show the contrary. This is
confirmed by Figure 6, which compares the change in bpref
after applying the SNOMED CT weighting against the per-
centage of concepts within a given query where |V(c)| = 1.
Points on the far right of the x-axis indicate queries where
many concepts were excluded from the weighting function.
Note, that every query has at least one query concept ex-
cluded after applying SNOMED CT weighting. In addition,
even when large portions of concepts are excluded from the
query (far right of the x-axis) there are still positive changes
in bpref. These queries contained a large number of concepts
which were deemed as peripheral to the medical domain and,
when excluded, aided performance.

Rather than completely exclude concepts with |Vs(c)| =
1 we did perform experiments with alternative approaches
that instead of excluding the concept, simply assigned a
logarithmic scaled weight (e.g., 1 + log(|Vs(c)|) or log(1 +
|Vs(c)|)). However, the best results in bpref were obtained
when query concepts with only one adjacent edge in SNOMED
CT were completely excluded. We conclude that a concept’s
lack of connectedness to other concepts in the domain on-
tology indicates they provide no additional information for
the query and, in fact, may be misleading.

The exclusion of certain concepts based on the SNOMED
CT connectedness is in effect a form of query reduction.
Query reduction has been considered by researchers in in-
formation retrieval; finding an ideal subset of query terms
can result in substantial performance gains [8, 2]. Kumaran



& Carvalho adopted a learning to rank approach that used
statistical predictors (such as IDF, tf, Mutual Information
and Query Clarity) to find an optimal query subset — they
found an upper bound of 30% increase in performance, but
their predictors only provided an 8% increase [8]. Bendersky
& Croft [2] made use of corpus based statistics (such as IDF)
and corpus independent indicators, such as Google n-grams,
to identify and weight ‘key concepts’ within the query. They
show improvements in retrieval, but found no robust feature
across different test collections. We have shown that the use
of a concept’s connectedness in the SNOMED CT ontology
provides an indicator of importance; in practice, providing
a good feature for the implementation of an implicit query
reduction method. Unlike previous approaches, our method
used only one feature and avoided the use of heavy-weight
machine learning to find an optimum feature combination;
we also introduce no additional parameters. An interesting
avenue of future work from this study is to consider query re-
duction specific to medical information retrieval, especially
given the rich amount of domain knowledge available in re-
sources such as SNOMED CT.

Finally, the findings of this study are applicable outside
of the medical domain, specifically the injection of domain
knowledge representing the importance of a term outside of
the corpus being indexed. We currently use connectedness
in SNOMED CT as the indicator of importance. Alternative
weighting could be applied based on connectedness within
any other resource represented as a graph, including domain
specific resources, or general resources such as WordNet.

6. CONCLUSION
This paper presents a graph-based method to weight med-

ical concepts found in documents for the purpose of medi-
cal IR. Graph-based representations are chosen over bag-
of-words representations because they capture the relation-
ships that exist between concepts, a feature important for
capturing the innate dependencies in medical natural lan-
guage. Additionally, concept-based representations are used
to overcome vocabulary mismatch and to encapsulate im-
portant n-grams into a single concept.

We adapt previous graph-based term weighting method
and apply them to concepts; a concept’s weight is based on
its PageRank score within the document. In addition, we
present a novel method for the injection of domain knowl-
edge regarding the concept’s importance within the wider
medical domain (not just the corpus itself). This method
has an interesting characteristic of excluding a large num-
ber of query terms, resulting in a form of query reduction,
and surprisingly leads to improvements in performance.

Evaluation was done on the TREC Medical Records track
and a number of strong baselines were provided for compari-
son. Results showed that our graph-based concept weighting
method outperforms each of the baselines.

The graph-based concept weighting method offers a frame-
work for integrating formal background knowledge, often
locked in medical domain ontologies, into data-driven ap-
proaches typical of information retrieval.
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