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Abstract. As part of Best of Labs, we have been invited to conduct
further investigation on the ImageCLEFmed Caption task of 2021. The
task required participants to automatically compose coherent captions
for a set of medical images. The most popular means of doing this is
with an encoder-to-decoder model. In this work, we investigate a set
of choices with regards to aspects of an encoder-to-decoder model. Such
choices include what pre-training data should be used, what architecture
should be used for the encoder, whether a natural language understand-
ing (e.g., BERT) or generation (e.g., GPT2) checkpoint should be used
to initialise the parameters of the decoder, and what formatting should
be applied to the ground truth captions during training. For each of these
choices, we first made assumptions about what should be used for each
choice and why. Our empirical evaluation then either proved or disproved
these assumptions—with the aim to inform others in the field. Our most
important finding was that the formatting applied to the ground truth
captions of the training set had the greatest impact on the scores of the
task’s official metric. In addition, we discuss a number of inconsisten-
cies in the results that others may experience when developing a medical
image captioning system.

Keywords: Medical image captioning - Encoder-to-decoder -
Multi-modal - Warm-starting

1 Introduction

ImageCLEFmed Caption 2021 is an international challenge where teams develop
a system that automatically generates a coherent caption for a given medi-
cal image (for example, X-ray, computed tomography, magnetic resonance, or
ultrasonography) [8,19]. To succeed, the system must not only identify medical
concepts but also their interplay. As with most medical image analysis tasks, a
deep learning model was the key component of the participants’ systems. The
model was trained using the provided dataset, containing medical images and
their associated ground truth captions. Its training set was relatively small (2.8K
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examples), adding complexity to the task. A training example from the task is
shown in Fig.1. The most popular model for medical image captioning is the
encoder-to-decoder model: the encoder produces features from a given image
which are then used to condition the decoder when generating the caption [18].

“This image is a transverse eval-
uation of the bladder and right
ureteral jet. Renal ultrasound
studies also include evaluation
of the wureterovesical junction
through Color Flow Doppler study
of fluid movement of the ureteral
jet.”

(a) Medical image (b) Ground truth caption

Fig. 1. The task was to develop an automated system that, given a medical image, could
predict the ground truth caption. Training example synpic100306 from the Image-
CLEFmed Caption 2021 dataset is shown, where (a) is the medical image and (b) is
its ground truth caption.

Our approach to ImageCLEFMed Caption 2021 was to use a Vision Trans-
former (ViT) [4] as the encoder and PubMedBERT [6] as the decoder (both are
detailed in Sect.2) [14]. Neither a ViT nor a domain-specific natural language
checkpoint such as PubMedBERT had previously been explored for medical
image captioning. As such, we have been invited to conduct a further investiga-
tion on the previously mentioned task as part of Best of Labs.

For this work, we aim to investigate a set of important choices for an encoder-
to-decoder model:

Choice 1: Pre-training data—The choice in question is what pre-training
data to use for warm-starting. Warm-starting refers to the initialisation of
a models parameters with those of a pre-trained checkpoint. A checkpoint
includes the values of all the learned parameters of a trained model. The pre-
training data could be from the general domain (e.g., Wikipedia articles used
for BERT [3]); or domain specific (e.g., biomedical corpora used for PubMed-
BERT [6]). Moreover, does warm-starting with a checkpoint from a related
task (e.g., Chest X-Ray (CXR) report generation) improve performance?

Choice 2: Encoder—The architecture of the encoder. Specifically, whether to
add convolutional layers to the ViT or not.

Choice 3: Decoder—The type of pre-training task of the decoder checkpoint.
The pre-training task could be a Natural Language Understanding (NLU)
task (e.g., the self-supervised learning tasks used to form BERT'), or a Natural
Language Generation (NLG) task (e.g., the language modelling task used to
form GPT2 [21]). NLU is the comprehension of natural language through
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grammar and context while NLG is the construction of natural language
based on a given input.

Choice 4: Formatting—How should the captions be formatted for training?
The official metric (described in Subsect. 3.2) employs a series of natural
language formatting steps, such as removing punctuation and stopwords.
These steps may seem innocuous and are rarely reported in other studies,
but as part of our submissions we had a number of unexplained performance
differences that we posit were a result of the differences between the caption
formatting during training and that used for the official metric [14].

Anyone setting out to develop medical image caption generation systems are
faced with the above choices, as we were before participating in ImageCLEFmed
Caption 2021. From these choices and one’s intuition, the following assumptions
may be held:

Assumption 1: Pre-train data—Warm-starting with a domain-specific
checkpoint, such as PubMedBERT, would outperform warm-starting with
a general-domain checkpoint, such as BERT. Moreover, one would assume
that an encoder-to-decoder model warm-started with a checkpoint from a
related task (e.g., CXR report generation) would outperform a model with
its encoder and decoder warm-started with general-domain checkpoints. This
is based on our expectations that transferring knowledge learned on a related
task to the final task typically results in an improvement in performance—
especially when the training set of the final task is relatively small.

Assumption 2: Encoder—That a ViT with convolutional layers would out-
perform one without. This is based on the fact that convolutional layers (with
small kernel sizes) have an inductive bias towards local spatial regions—an
advantage for modelling the fine details present in medical images.

Assumption 3: Decoder—That an NLG checkpoint, such as GPT2, would
outperform an NLU checkpoint, such as PubMedBERT. This based on the
intuition that the pre-training task of an NLG checkpoint would be more
transferable to the task of caption generation.

Assumption 4: Formatting—That formatting the ground truth captions of
the training set does not have an impact on the performance of a model with
regards to the official metric. This is based on the fact that the metric used
for the challenge applies a series of formatting steps to both the predicted and
ground truth captions—potentially rendering any formatting applied during
training redundant.

Curiously, our experience was that many of these intuitive assumptions were
not supported by our empirical evaluation.

The remainder of this paper is around an empirical evaluation of a set of mod-
els on the ImageCLEFmed Caption 2021 task, where the models were selected
to prove or disprove the above assumptions. The results will help to inform oth-
ers working on similar tasks who may share the same assumption. We test each
assumption individually and discuss why they do or do not hold.
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2 Background and Related Work

Prior to ImageCLEFmed Caption 2021, a Convolutional Neural Network (CNN)
[7] and a decoder-only Transformer [27] were typically employed as the encoder
and decoder, respectively. Convolutional layers have an inductive bias towards
local spatial regions owing to their small kernel sizes, making them ideal for
modelling the fine details present in medical images. Transformers, which lever-
age the attention mechanism, have the ability to model the relationship between
all of its inputs simultaneously, lending themselves to modelling the free text of
medical captions [27].

General-domain ImageNet checkpoints were also frequently employed to
warm-start the encoder (where ImageNet is a large general-domain image clas-
sification task) [10,25]. The transfer of knowledge from the pre-training task to
the final task can provide a significant performance boost, particularly when the
pre-training dataset is significantly larger than that of the final task. Further-
more, warm-starting is particularly effective when the domain of the pre-training
task is similar to that of the final task. However, there is a lack of medical image
checkpoints outside of CXR tasks [22]. Furthermore, warm-starting the decoder
was not common practice prior to the competition.

Prior to the challenge, ViTs were investigated for computer vision tasks and
demonstrated the ability to model the relationship between patches of an image.
However, ViTs lack the inductive biases that enable CNNs to perform well on
such tasks. Surprisingly, ViTs are able to overcome this deficiency at larger
dataset sizes (14M-300M images) [4]. Subsequently, it was demonstrated that
a ViT encoder warm-started with an ImageNet checkpoint outperformed its
CNN counterpart on general-domain image captioning [12]. Given this, and the
aptitude of ImageNet checkpoints at warm-starting medical image tasks, we
selected the ViT and its ImageNet checkpoint for the encoder of our original
system.

While medical image checkpoints were scarce in the literature, many medi-
cal text checkpoints were available. Several large pre-trained NLU encoder-only
Transformer checkpoints were formed via the self-supervised learning strate-
gies of BERT [3] and large biomedical corpora. One instance is PubMed BERT
[6]—an encoder-only Transformer pre-trained on biomedical articles from the
PubMed corpus.! However, a decoder is typically warm-started with an NLG
decoder-only Transformer checkpoint, such as GPT2 [21]. Despite this, Rothe et
al. demonstrated that the decoder warm-started with an NLU checkpoint could
outperform its NLG counterpart on several sequence-to-sequence NLG tasks [24].
This suggested that PubMedBERT would be ideal to warm-start the decoder.

With our encoder-to-decoder model, ViT2PubMedBERT, we had nine sub-
missions. Amongst the submissions we attempted additional pre-training of
the encoder on medical images (from four X-ray datasets), pre-training of the
encoder and decoder on a larger medical image captioning datset (ROCO [20]),
and additional fine-tuning using reinforcement learning [23]. However, there was

! https://pubmed.ncbi.nlm.nih.gov/.
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a discrepancy between the validation scores we were attaining on our metrics ver-
sus the test scores attained using the official metric: a validation score improve-
ment did not correlate with a test score improvement [14]. One possible reason
for this is that the formatting used on the ground truth captions of the training
set was different to that used for the official metric.

Our subsequent work following ImageCLEFmed Caption 2021 investigated
a range of architectures and checkpoints for warm-starting the encoder and
decoder for a related task: CXR report generation. Other than the fact that
this is a more specific task (i.e., only one modality is considered), the biggest
difference is the size of the datset, with the MIMIC-CXR dataset including 270K
examples in the training set [9]. We also found that CNNs such as ResNets out-
performed ViT [7]. We also investigated improvements to the ViT and found that
a Convolutional vision Transformer (CvT) encoder produced the highest perfor-
mance. We also found that GPT2 and DistilGPT2 [26] outperformed domain-
specific NLU checkpoints such as PubMedBERT—possibly due to the fact that
GPT2 is an NLG checkpoint. This was different to the finding of Rothe et al.,
likely due to one key difference: the task of the encoder for CXR report gener-
ation is to produce features from images rather than natural language. Another
finding was that PubMedBERT—a domain-specific NLU checkpoint—was able
to outperform BERT—a general-domain NLU checkpoint [16]. These findings
have influenced some of the aforementioned assumptions—as our ancillary aim
of this study is to determine if the findings on MIMIC-CXR are upheld on the
ImageCLEFmed Caption 2021 task.

3 Methodology

In this section, we describe the dataset, metrics, models, fine-tuning strategy,
image pre-processing, and text formatting.

3.1 Task Description and Dataset

For ImageCLEFmed Caption 2021, participants were tasked with developing a
system that could generate a caption for a given medical image. The motivation
behind this task is to help develop tools that can aid medical experts with inter-
preting and summarising medical images, a task that is often time-consuming
and a bottleneck in clinical diagnosis pipelines. Each example from the dataset
consisted of a medical image and its associated ground truth caption, as shown
in Fig. 1. The data was divided into training (n = 2756), validation (n = 500),
and test (n = 444) sets. Evaluation was performed by comparing the predicted
captions to the annotations provided by medical doctors (i.e., the ground truth
captions).
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3.2 Metrics

We adopted the official metric of ImageCLEFmed Caption 2021 for the validation
and test sets: CLEF-BLEU. It was computed as follows for each predicted and
ground truth caption:

1. Lowercased: The caption was first converted to lower-case.

2. Remove punctuation: All punctuation was then removed and the caption
was tokenized into its individual words.

3. Remove stopwords: Stopwords were then removed using NLTK’s English
stopword list (NLTK v3.2.2).

4. Stemming: Stemming was next applied using NLTK’s Snowball stemmer
(NLTK v3.2.2).

5. The score was then calculated as the average score of BLEU-1, BLEU-2,
BLEU-3, and BLEU-4 between the predicted and ground truth captions [17].

Note that each caption was always considered as a single sentence, even if it
contained several sentences.

Furthermore, the following metrics were used for evaluation on the validation
set: BLEU-1, BLEU-2, BLEU-3, and BLEU-4 [17], ROUGE-L [11], and CIDEr
[28]. This was to aid with understanding how formatting the ground truth cap-
tions impacted the performance each model. The formatting is detailed in Sub-
sect. 3.5.

3.3 Models

The encoder-to-decoder models investigated in this work are listed below. An
example of one is shown in Fig. 2. The input to the encoder is a medical image.
The output of the encoder (CvT-21) is fed to the cross-attention module of
the decoder (DistilGPT2), which then generates a caption in an autoregressive
fashion—conditioned on the encoders output. It should be noted that each model
employs a linear layer that projects the last hidden state of the encoder to the
hidden size of the decoder.

ViT2BERT—ViT (86M parameters) is the encoder [4]. It was warm-started
with a checkpoint pre-trained on ImageNet-22K (14M images, 21 843 classes)
at a resolution of 224x224 and then additionally trained on ImageNet-1K
(IM images, 1000 classes) at resolution of 384x384. BERT (110M parame-
ters) is the decoder, which is pre-trained on BookCorpus [31] and Wikipedia
articles in an uncased manner using self-supervised learning [3]. Both ViT
and BERT are 12 layers with a hidden size of 768.

ViT2PubMedBERT—Identical to ViT2BERT, except that PubMedBERT
(110M parameters) is the decoder. Its main difference to BERT is the
pre-training data: abstracts from PubMed (4.5B words) and articles from
PubMed Central (13.5B words).
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CvT-21 DistilGPT2

x 3 Stages

« N, Layers Y \ this image is a transverse evaluation of the bladder

x6 Layers

/-~ %
Multi-head attention*

Conv. token embedding <+ position embeddings

Token embeddings

[BOS] this image is a transverse evaluation of the

Fig. 2. CvT2DistilGPT2. @, K, and V are the queries, keys, and values, respectively,
for multi-head attention [27]. * indicates that the linear layers for @, K, and V are
replaced with the convolutional layers depicted below the multi-head attention module.
[BOS] is the beginning-of-sentence special token. Nj is the number of layers for each
stage, where N; = 1, N; = 4, and N; = 16 for the first, second, and third stage,
respectively. The head for DistilGPT?2 is the same used for language modelling.

ViT2DistilGPT2—Identical to ViT2BERT, except that DistilGPT2 (82M
parameters) is the decoder. It is pre-trained using knowledge distillation
where DistilGPT2 was the student and GPT2 was the teacher. OpenWeb-
Text, a reproduction of OpenAl’s WebText corpus, was used as the pre-
training data [5]. DistilGPT2 includes 6 layers with a hidden size of 768.

CvT2DistilGPT2—Identical to ViT2DistilGPT2, except that CvT-21 (32M
parameters) is the encoder. CvT-21 was warm-started with an ImageNet-
22K checkpoint with a resolution of 384x384 [30]. It has three stages, with
a combined 21 layers.

CvT2DistilGPT2-MIMIC-CXR—This is CvI2DistilGPT2 warm-started
with a MIMIC-CXR, checkpoint [15,16]. The checkpoint was not addition-
ally fine-tuned with reinforcement learning on MIMIC-CXR.
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3.4 Medical Image Pre-processing

Each medical image X € RE*W>H (where C, W, and H denote the number
of channels, the width, and height, respectively) had an 8-bit pixel depth and
three channels (C' = 3). The image was first resized using bilinear interpolation
to a size of R3*384X384 Dyring training, the image was also rotated at an angle
sampled from U[—5°,5°]. Finally, the image was standardised using the mean
and standard deviation of each channel provided with the encoder checkpoint.

3.5 Caption Formatting and Generation

We investigated five different formatting strategies for the ground truth captions
of the training and validation sets, to determine their impact on CLEF-BLEU:

No formatting.

Lowercased.

Lowercased + no punctuation.

Lowercased + no punctuation + no stopwords.

Lowercased + no punctuation + no stopwords + stemming,.

CUb o=

These formatting steps were described in Subsect. 3.2. When generating the cap-
tions during validation and testing, beam search with a beam size of four and a
maximum number of 128 subwords was used.

3.6 Fine-Tuning

Teacher forcing was used for fine-tuning [29]. Each model was implemented in
PyTorch version 1.10.1 and trained with 4xNVIDIA P100 16 GB GPUs. To
reduce memory consumption, we employed PyTorch’s automatic mixed precision
(a combination of 16-bit and 32-bit floating point variables). For fine-tuning, the
following configuration was used: categorical cross-entropy as the loss function;
a mini-batch size of 32; early stopping with a patience of 20 epochs and a min-
imum delta of le—4; AdamW optimiser for gradient descent optimisation [13];
an initial learning rate of le—5 and le—4 for the encoder and all other parame-
ters, respectively, following [2]. All other hyperparameters for AdamW were set
to their defaults. To select the best epoch for a model, the highest validation
BLEU-4 score was used.
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Table 1. Results on the validation and test sets of ImageCLEFmed Caption 2021.
A higher colour saturation indicates a higher score. For CLEF-BLEU, the full for-
matting described in Subsect.3.2 was applied to both the predicted and ground
truth captions for every row. For the other metrics and for training, the indicated
formatting was applied to the ground truth captions. - MIMIC-CXR indicates

CvT2DistilGPT2-MIMIC-CXR.

Validation Set Test Set

Model
CLEF CLEF

BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L CIDEr
LEU BLEU
Strategy 1: No formatting
ViT2BERT 0.315 0.258 0.227 0.206 0.275 1.462 0.405 0.406
ViT2PubMedBERT 0.348 0.291 0.258 0.236 0.306 1.703 0.432 0.406
ViT2DistilGPT2 | 0.363  0.310 | 2243 0.428 0.384
CvT2DistilGPT2 | 0433  0.400
SMIMIC-CXR 0.348 0.304 0.427 0.407
Strategy 2: Lowercased
ViT2BERT 0.358 0.304 0.277 0.261 0.317 1.932 0.405 0.406
ViT2DistilGPT2 0.370 0.322 0.299 0.287 0.336 0.408
CvT2DistilGPT2 0.380  0.332  0.308 0.405
—SMIMIC-CXR 0.354 0.304 0.281 0.269 0.318 2.094 0.402 0.397
Strategy 3: Lowercased + no punctuation
ViT2BERT 0.378 0.325 0.299 0.286 0.347 2.328 0.404
ViT2PubMedBERT 0.426
ViT2DistilGPT2 0.387 0.338 0.314 0.301 0.351 2.400 0.394
CvT2DistilGPT2 0.388 0.338 0.315 0.302 0.356 0.401
SMIMIC-CXR 0.373 0.320 0.296 0.283 0.333 2.267 0.414 0.400
Strategy 4: Lowercased + no punctuation + no stopwords
ViT2BERT 0.355 0.319 0.302 0.292 0.327 2.430 0.430
ViT2PubMedBERT 0.423
ViT2DistilGPT2 0.342 0.308 0.292 0.283 0.311 2.356 0.421 0.410
CvT2DistilGPT2 0.332 0.301 0.286 0.277 0.315 2.409 0.430 0.400
SMIMIC-CXR 0.322 0.290 0.274 0.264 0.308 2.342 0.422 0.398
Strategy 5: Lowercased 4+ no punctuation + no stopwords 4 stemming

ViT2BERT 0.364 0.321 0.301 0.290 0.328 2.355 0.419 0.396
virpueaperr [NOSOSINOSAGINNOSZa oS oSG98 00 0410
ViT2DistilGPT2 0.355 0.317 0.299 0.289 0.326 2.444 0.399 0.383
CvT2DistilGPT2 0.355 0.316 0.298 0.288 0.330 2.462 0.416 0.391
SMIMIC-CXR 0.353 0.313 0.295 0.285 0.328 2.457 0.425 0.394

4 Results and Discussion

Table 1 presents results from our empirical evaluation. We shall discuss the
results as they relate to the four assumptions detailed in the introduction.
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4.1 Assumption 1: Pre-training Data

The first assumption was that PubMedBERT as the decoder would outperform
BERT—as it is a domain-specific checkpoint. In terms of the validation scores,
this assumption stood, as ViT2PubMedBERT outperformed ViT2BERT (except
for validation CLEF-BLEU on Strategy 5). However, this finding was not con-
sistent with the test scores, with ViT2BERT producing the highest score of any
model (0.430). This contradiction indicates that the results on the validation set
do not generalise to the test set.

The next assumption was that warm-starting the encoder-to-decoder model
with a CXR report generation checkpoint would improve performance, especially
given the small size of the training set. The performance of CvT2DistilGPT2-
MIMIC-CXR was not significantly different from CvT2DistilGPT2 in terms
of the test scores. However, the validation scores refute the assumption, as
CvT2DistilGPT2 consistently produced higher validation scores. One explana-
tion is that X-rays are not the dominant modality in the ImageCLEFmed Cap-
tion 2021 training set, where computed tomography and magnetic resonance are
more represented [1, Table 1].

4.2 Assumption 2: Encoder

Here, we determine if including convolutional layers in the encoder, i.e., choos-
ing CvT over ViT, improves performance. When no formatting is used dur-
ing training, CvT2DistilGPT2 attains higher validation and test scores than
ViT2DistilGPT2. However, when formatting is used during training, the picture
becomes unclear. For example, CvT2DistilGPT2 attains higher validation and
test scores for Strategies 3 and 5, while ViT2DistilGPT2 attains higher validation
and test scores for Strategies 2 and 4. Therefore, it is unclear if adding convo-
lutional layers to ViT (i.e., using CvT instead) is advantageous for this task,
refuting the findings in [16]. However, it should be noted that CvT consumes
drastically fewer parameters than ViT—demonstrating parameter efficiency.

4.3 Assumption 3: Decoder

The assumption made for the decoder was that an NLG checkpoint would out-
perform an NLU checkpoint. Comparing ViT2BERT to ViT2DistilGPT2 on the
validation scores for no formatting, DistilGPT2 as the decoder outperforms
BERT by a large margin. However, this margin decreases as the number of for-
matting steps increases—BERT as the decoder even outperforms DistilGPT2 on
the validation set in certain cases. This indicates that BERT is less sensitive to
the formatting steps applied to the ground truth captions of the training set.
However, their scores on the test set tell a different story. BERT as the decoder
attained a higher test score than DistilGPT2 for each strategy, except Strat-
egy 2. Again, the results on the validation set are misleading, as they do not
generalise to the test set [16].
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4.4 Assumption 4: Formatting

Originally, we assumed that formatting the ground truth captions of the training
set would have no impact on performance. However, the results indicate that,
in fact, it does have an impact. ViIT2BERT experienced an absolute test CLEF-
BLEU improvement of 2.4% when Strategy 3 was used instead of no formatting.
This is opposite to the original assumption made—applying formatting to the
predicted and ground truth captions before evaluation does not mean that there
is no benefit to using formatted ground truth captions as the training target.

“Reference”
= = =
= Z = Z = Z
m [a N 3] = ~ [a] 5 ) ~ ~ 5
g = £ 5 g o= £ 5 mo= 55
T A& & D T A & D T A& & D
S v U = S v U = . v U =
HE = 2 2 2 B =2 =2 £ =2 B = =2 Z =2
& - £ % B & & ¥ B § & - £ B H
m = 2 = S m = 2 B = = = B2 B S
m a8 82 T @ &4 8 87T 4 & 48 82 7
[a\} (o] [aN} N (o] [aN) [a\] [a\] [a\}
S R e B o2 g e B o2 g
«Candidate” = - © O > 5 5 0 > 5 5 0
ViT2BERT 0:380.28 0.2370.22 0:4210.33 0.31/0:29 102/2.07 1.80 11270
ViT2PubMed BERT [0.38 0.26 0.24 0.24 3.02 1.82 1.84 1.86
ViT2DistilGPT2 0.28 0.26 0.30 0.29 2.08 1.84 2.59 2.60
CvT2DistilGPT2 [0.23 0.24 0.30 0.33 1.81 1.86 2.59 2.81

SMIMIC-CXR [0.22 0.25 0.30 0.33 0.29 0.32 0.34 0.36 1.70 1.88 2.60 2.81

BLEU-4 ROUGE-L CIDEr

Fig. 3. The similarity between the predicted captions of the models on the validation
set. Each metric requires reference and candidate captions. Here, the predicted captions
of one model are used as the reference captions (instead of the ground truth captions)
and the predicted captions of the other model as the candidate captions. No formatting
was applied to the ground truth or predicted captions during training or evaluation. The
presented matrices are not symmetric as each metric treats the candidate and reference
captions differently. > MIMIC-CXR indicates CvT2DistilGPT2-MIMIC-CXR.

On another note, BERT and PubMedBERT appear to be either less sen-
sitive to formatting, or benefit from formatting, especially with the third and
fourth formatting strategies. This could be caused by multiple factors; an NLU
checkpoint may be more robust than an NLG checkpoint to formatting. More-
over, DistilGPT2 may be disadvantaged by the fact that it is cased, rather than
uncased like BERT and PubMedBERT.

4.5 Similarity Between Predicted Captions

The results in Table1 are solely focus on model differences according to their
effectiveness on the ImageCLEFmed Caption 2021 task. While this provides
some insight, we also want to understand how similar the captions generated
by the models (i.e., the predicted captions) are to one another. Specifically, two
models may have a similar effectiveness on the ImageCLEFmed Caption task,
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but they may generate significantly different captions. To compute the similarity
between a pair of models, we give their generated captions to a metric. Each
metric consumes candidate and reference captions and treats each differently.
Hence, we conduct a pair-wise comparison between the generated captions of a
pair of models. The results of this are shown in Fig. 3.

It can be seen that the generated captions of ViT2PubMedBERT and
ViT2BERT were the most similar to one another; CvT2DistilGPT2 and
CvT2DistilGPT2-MIMIC-CXR also attained a high similarity. This is some-
what surprising given that the pre-training data of the checkpoints in each
comparison are different. However, the high similarity makes sense from an
architectural point of view as the models in each comparison employ the same
(or very similar) encoder and decoder architectures. The most dissimilar mod-
els are ViIT2BERT and CvT2DistilGPT2-MIMIC-CXR. This makes sense as
they are the most dissimilar in terms of their pre-training data, encoder, and
decoder. Finally, ViT2DistilGPT2 versus CvTDistilGPT2 had a higher similar-
ity than ViT2DistilGPT2 and ViT2BERT, indicating that the decoder has a
larger impact on dissimilarity than the encoder.

5 Conclusion

For our Best of Labs contribution, we posed a set of assumptions regarding
choices pertaining to an encoder-to-decoder model for medical image captioning,
and then set out to prove or disprove them through an empirical evaluation.
Our key finding was that the type of formatting applied to the ground truth
captions of the training set had the greatest impact on the scores obtained
on the official metric of the task. The results also indicate that BERT and
PubMedBERT as the decoder are less sensitive to additional formatting steps
than DistilGPT2. Unfortunately, assumptions made about the pre-training data,
encoder, and decoder could not be proved or disproved, as the results were
inconclusive. A key problem was that the hierarchy of performance amongst the
models on the validation set did not generalise to the test set. This could be due
to the limited size of the dataset or significant differences between the validation
and test sets.
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