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Abstract
We describe the participation of team CSIRO in the ImageCLEFmedical Caption task of 2022. This
task consisted of two subtasks: concept detection and caption prediction. Concept detection involved
identifying medical concepts within a given medical image. To accomplish this, we employed an ensemble
of DenseNets with threshold tuning. CSIRO placed third amongst the participating teams with an F1
score of 0.447. For caption prediction, the task was to compose a coherent caption for a given medical
image. We employed an encoder-to-decoder model with the Convolutional vision Transformer (CvT) as
the encoder and DistilGPT2 as the decoder. CSIRO placed third amongst the participating teams with a
BLEU score of 0.311.
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1. Introduction

Interpreting medical images is a complex and labour-intensive task. To become proficient
requires a significant amount of training. A radiologist must be able to interpret medical
concepts and their interplay from the image. On top of this, the workload of radiologists has
increased significantly over the last couple of decades — mostly due to increases in cross-
sectional imaging and under-staffing [1, 2]. This leads to the need for an automated system that
can produce textual descriptions of medical images. Such a system could improve the efficiency
of interpretation and report creation — potentially reducing the workload and improving patient
care. Such a system could also increase the diagnostic accuracy of non-specialist clinicians who
have a lower diagnostic confidence [3, 4].

The ImageCLEFmedical Caption task of 2022 [5, 6] is a step in this direction with its two
subtasks: concept detection and caption prediction. For these subtasks, participants were
required to develop methods from the provided dataset. The dataset was formed from a large-
scale collection of figures from open access biomedical journal articles (PubMed Central). All
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images in the dataset were accompanied by a caption, which form the labels for the caption
prediction task. Unified Medical Language System (UMLS) concepts were extracted from each
caption, forming the labels for the concept detection task.

In this article, we detail the methodology of our submissions for these two subtasks (Subsec-
tions 4.2 and 5.2). For concept detection, we make use of an ensemble of deep convolutional
models. For caption prediction, we leverage encoder-to-decoder models, where the encoder is a
computer vision model and the decoder is a natural language model. The remainder of this arti-
cle includes a description of the two subtasks (Section 3), followed by a description and analysis
of the data (Section 3). Following this, we describe the methodology and discuss the results for
the concept detection task (Subsections 4.2 and 4.3). We then describe the methodology and
discuss the results for the caption prediction task (Subsections 5.2 and 5.3) before concluding
the article (Section 6).

Figure 1: A sample of images extracted from the dataset. The dataset includes an extensive range of
modalities and anatomical regions, as well as both high and poor quality images. The licenses for the
images from left to right are CC BY [7], CC BY-NC [8], CC BY [9], CC BY [10], and CC BY-NC [11].

2. Task Description

Concept Detection Task. A precursor to automatic medical image captioning is the identifica-
tion of concepts in medical images.1 This task is arduous given that the system must contend
with 8 374 possible concepts. The concepts can be further applied for context-based image and
information retrieval purposes.
Caption Prediction Task. Building upon the concept detection task, a system must not
only detect concepts from a medical image, but also understand their interplay. From this
understanding, the system must then compose a coherent natural language caption, akin to
what a radiologist might write to describe their interpretation of an image.

3. Dataset Description & Analysis

Here, we describe the dataset for the concept detection and caption prediction subtasks. The
dataset is a subset of the extended Radiology Objects in COntext (ROCO) dataset [12]. ROCO

1Concepts are taken from some pre-defined medical terminology. In this case, the concepts are from the UMLS
medical thesaurus.
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Figure 2: Number of occurrences of the concepts in the training split.

T0
63

T0
73

T0
90

T0
55

T1
70

T1
31

T1
21

T1
22

T1
14

T0
48

T0
34

T0
19

T1
16

T1
91

T0
33

T1
09

T1
29

T0
42

T1
90

T1
84

T0
37

T0
47

T0
59

T0
61

T0
26

T0
70

T0
74

T1
30

T0
29

T0
41

T1
27

T0
24

T0
81

T2
01

T0
18

T0
46

T0
31

T1
96

T0
23

T0
40

T0
30

T1
85

T0
80

T1
69

T1
23

T0
62

T0
82

T0
60

T0
39

T1
97

T1
95

TUI

0.5

1.0

1.5

2.0

2.5

3.0

3.5

lo
g 10

#
co

nc
ep

t

Figure 3: Number of occurrences of the concepts grouped by Type Unique Identifier (TUI).

originates from biomedical articles of the PubMed Central Open Access subset.2 The images of
the dataset were split into training (𝑛 = 83 275), validation (𝑛 = 7645), and test (𝑛 = 7601)
sets. The concepts were generated using a reduced subset of the UMLS 2020 AB release for
the concept prediction task, which includes the sections (restriction levels) 0, 1, 2, and 9. To

2https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/

https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/


Table 1
Exemplars of common concepts.

Concept Name #

T060: Diagnostic Procedure

C0040405 X-Ray Computed Tomography 25989
C1306645 Plain x-ray 24389
C0024485 Magnetic Resonance Imaging 14622
C0041618 Ultrasonography 11147

· · ·
T082: Spatial Concept

C0205131 Axial 3187
C0238767 Bilateral 2722
C0205129 Sagittal 2012
C0205091 Left 1696

· · ·

Concept Name #

T080: Qualitative Concept

C0444706 Measured 1337
C0019409 Heterogeneity 958
C0392756 Reduced 831
C0442800 Enlarged 774

· · ·
T130: Indicator or Diagnostic Aid

C0009924 Contrast Media 1406
C0016911 gadolinium 289
C1522485 Tracer 104
C0013343 Dyes 43

· · ·

Table 2
Exemplars of rare concepts.

Concept Name #

T019: Congenital Abnormality

C0265905 Agenesis of pulmonary artery 3
C2959359 Abnormal ventriculoarterial connection 3
C0266035 Enamel pearls 3

· · ·
T048: Mental or Behavioral Dysfunction

C0006012 Borderline Personality Disorder 3
C0016142 Firesetting Behavior 3
C0686346 Gender Dysphoria 3

· · ·
T122: Biomedical or Dental Material

C0181075 Bone graft - material 3
C0011324 Dental Amalgam 3

· · ·

Concept Name #

T131: Hazardous or Poisonous Substance

C0037390 Snuff Tobacco 3
C0142056 Asbestos, Serpentine 3
C0556615 Paint thinners 3
C0003947 Asbestos 6
C0007018 carbon monoxide 10

· · ·
T063: Molecular Biology Research Technique

C0920677 Gene Delivery Systems 3
C4725722 Second-strand Library Sequencing 3

T073: Manufactured Object

C0183336 Sleeve 4
T170: Intellectual Product

C0205442 Eighth 4

improve the feasibility of recognising concepts from the images, concepts were further filtered
based on their semantic type.

The images in this dataset are very diverse, as depicted in Figure 1. An average of 4.74± 2.72
concepts are present for each image (the maximum number of concepts present in a single
image is 50, and the minimum is 1). The concept distribution within the training dataset is
highly skewed, as depicted in Figure 2, 93.36% concepts appear in less than 0.15% of the
images. Concepts are grouped into higher-level semantic types; for example, concept “C0024485:
Magnetic Resonance Imaging” is of type “T060: Diagnostic Procedure”. As a result of the skewed
count distribution, there is also an imbalance across Type Unique Identifiers (TUIs), as displayed
in Figure 3. To illustrate this imbalance, we provide examples of common and rare concepts in
Tables 1 and Table 2, respectively.



4. Concept Detection

In this section, we describe our participation pertaining the concept detection task. First, we
describe the evaluation metric. Following this, we describe the methodology, as well as the
model development on the task’s dataset. Finally, we discuss the performance of our best model
versus those of the other participants.

4.1. Evaluation Metrics

The F1 score between the predicted and ground truth concepts was the primary metric for
concept detection. This was calculated as follows:

1. The Python scikit-learn f1_score function (v0.17.1-2) [13] was used to compute the
F1 score between the predicted and ground truth boolean arrays. The default ‘binary’
averaging method was used.

2. All F1 scores were summed and averaged over the number of elements in the test set
(7 601), giving the final score.

4.2. Methodology & Model Development

4.2.1. Image Pre-processing

Each medical image 𝑋 ∈ R𝐶×𝑊×𝐻 (where 𝐶 , 𝑊 , and 𝐻 denote the number of channels, width,
and height, respectively) had an 8-bit pixel depth and three channels (𝐶 = 3). The image was
first resized using bilinear interpolation to a size of R3×224×224 and normalised according to the
mean and standard deviation defined by the ImageNet checkpoints [14]. During training, the
image was rotated at an angle sampled from 𝒰 [−50∘, 50∘] and randomly flipped horizontally
or vertically with an independent probability of 0.4.

4.2.2. Architecture Selection

To select the architecture of the model for concept detection, we performed a grid search, as
seen in Table 3. For this, we considered DenseNet-121 (7.2M parameters) [15], ResNet-18 (11.4M
parameters) [16], and VGG-16 (134.7M parameters) [17]. Each model was trained for thirty hours
using early stopping with either the stochastic gradient descent optimiser or Adam optimiser
[18]. We also considered several learning rates from 0.01 to 10−5, as detailed in Table 3. Finally,
we investigated three different initialisation procedures:

1. Freezing all the convolutional weights obtained from ImageNet and training only the last
fully connected layers of the network (denoted by MLP in Table 3)

2. Training all weights from scratch (denoted by scratch in Table 3)
3. Initialising the weights with an ImageNet checkpoint and fine-tuning all of the network’s

weights (denoted by ImageNet in Table 3).

We observed that the best results were produced for the Adam optimiser [18] with a learning
rate in the range [10−5, 5·10−4], and fine-tuning all the weights of DenseNet-161 initialised with



Table 3
Architecture selection for varied learning rates and optimisers. A higher colour saturation indicates a
better score. Green indicates the F1 score while blue indicates recall. Did Not Finish (DNF) indicates
that a model did not converge during training.

Learning rate 0.01 0.005 0.001 0.0005 0.0001 0.00005 0.00001

F1 Recall F1 Recall F1 Recall F1 Recall F1 Recall F1 Recall F1 Recall

DenseNet MLP ADAM 0.2348 0.2096 0.2823 0.1993 0.3148 0.1992 0.3160 0.2000 0.3153 0.2000 0.3155 0.1990 0.3123 0.1949

DenseNet MLP SGD 0.2817 0.1674 0.2561 0.1487 0.1560 0.0850 0.0844 0.0442 0.0372 0.0229 DNF DNF DNF DNF

DenseNet scratch ADAM 0.3106 0.1974 0.3076 0.1945 0.3191 0.2016 0.3215 0.2069 0.3210 0.2086 0.2255 0.1328 0.2255 0.1328

DenseNet scratch SGD 0.1654 0.0977 0.0980 0.0549 0.0988 0.0550 DNF DNF DNF DNF DNF DNF DNF DNF

DenseNet ImageNet ADAM 0.3095 0.1966 0.3126 0.1974 0.3238 0.2143 0.3283 0.2123 0.3289 0.2147 0.3310 0.2173 0.3290 0.2142

DenseNet ImageNet SGD 0.3156 0.1949 0.2514 0.1452 0.0552 0.0304 0.0863 0.0480 DNF DNF DNF DNF DNF DNF

ResNet MLP ADAM 0.2393 0.1901 0.2816 0.1840 0.2982 0.1900 0.2991 0.1898 0.3020 0.1887 0.3003 0.1872 0.2954 0.1828

ResNet MLP SGD 0.2691 0.1599 0.2437 0.1414 0.1421 0.0775 0.1161 0.0625 0.0303 0.0157 DNF DNF DNF DNF

ResNet scratch ADAM 0.2812 0.1751 0.2957 0.1839 0.2720 0.1689 DNF DNF 0.2957 0.1858 0.2319 0.1420 0.3205 0.2046

ResNet scratch SGD 0.2799 0.1730 0.2251 0.1371 0.0480 0.0256 DNF DNF DNF DNF 0.0010 0.4095 DNF DNF

ResNet ImageNet ADAM 0.3142 0.1985 0.3109 0.1964 0.3229 0.2048 0.3243 0.2089 0.3258 0.2133 0.3273 0.2114 0.3267 0.2112

ResNet ImageNet SGD 0.3073 0.1889 DNF DNF DNF DNF DNF DNF 0.0330 0.0235 DNF DNF DNF DNF

VGG MLP ADAM 0.3002 0.2046 0.3040 0.2062 0.3114 0.2045 0.3097 0.1986 0.3121 0.1973 0.3118 0.1972 0.3108 0.1954

VGG MLP SGD 0.2978 0.1834 0.2917 0.1781 0.2590 0.1540 0.2253 0.1302 0.1763 0.0990 0.0767 0.0412 0.0021 0.0558

VGG scratch ADAM DNF DNF DNF DNF DNF DNF DNF DNF 0.2738 0.1665 0.2559 0.1550 0.2710 0.1669

VGG scratch SGD 0.2804 0.1742 0.2510 0.1551 0.1477 0.0825 0.0534 0.0279 0.0013 0.3967 0.0440 0.0308 0.1315 0.0789

VGG ImageNet ADAM DNF DNF DNF DNF DNF DNF 0.3157 0.1967 0.3237 0.2046 0.3256 0.2069 0.3274 0.2088

VGG ImageNet SGD 0.3179 0.1992 0.3172 0.1978 0.3085 0.1920 0.2981 0.1844 0.1701 0.0945 DNF DNF DNF DNF

an ImageNet checkpoint. We also benchmarked more recent architectures, such as EfficientNet-
B7 [19] and RegNetY-8GF [20], but they did not offer an improvement in performance over
DenseNet-161.3

4.2.3. Improving Performance on Underrepresented Concepts

The concept detection task is a multi-label classification problem. For this purpose, the final acti-
vation function of each model was set to the sigmoid function. Moreover, Binary Cross-Entropy
(BCE) was used as the loss function. In order to improve the recall for the underrepresented
classes in the training set described in Section 3, we experiment with three different approaches,
namely, weighted BCE loss, preferential sampling, and threshold optimisation. We also investi-
gated an ensemble of models.

Weighted BCE loss: Given a ground truth concept vector y ∈ {0, 1}𝑁 and a prediction vector
ỹ ∈ [0, 1]𝑁 , the p-weighted BCE loss is defined as:

1

𝑁

𝑁∑︁
𝑖=1

(︁
p𝑖y𝑖 log(ỹ𝑖) + (1− y𝑖) log(1− ỹ𝑖)

)︁
. (1)

We trialled different weighting vectors p, ranging from continuous weighting that is inversely
proportional to the frequency of the concept within the training set, to quantified weighting for

3Each implementation and checkpoint is from https://github.com/pytorch/vision/tree/main/torchvision/models
and the input images are re-sized to the architecture’s requirement.

https://github.com/pytorch/vision/tree/main/torchvision/models


different percentiles of the count distribution that more heavily penalises mispredictions of rare
concepts. However, we found through 10-fold cross-validated that weighted BCE loss did not
consistently improve the F1 score.

Preferential sampling: For the second approach, we over-sampled training examples that
contained rare concepts by providing them with a larger sampling probability. This was
in an attempt to balance the number of times a model would observe each concept during
training. However, we found through 10-fold cross-validation that preferential sampling did
not consistently improve the F1 score.

Threshold optimisation: Given a model’s prediction, one has to convert the vector of probabil-
ities into a set of concepts. This is classically performed using thresholding (where a threshold
of 0.5 is typically used for each class). In this challenge, we propose to fine-tune those thresh-
olds based on the performance on a holdout dataset 𝒟; this is done by solving the following
optimisation problem:

argmax
t∈[0,1]𝑁

∑︁
y𝑖∈𝒟

F1-score
(︁
1ỹ𝑖≥t,y

𝑖
)︁
, (2)

where 1∙≥t is a piecewise comparison operator that returns 1 if the 𝑖-th entry of ∙ is greater
or equal to t𝑖, else, 0 is returned. Empirically, we noticed that optimising the threshold for
rare concepts did not generalise well (‘100% threshold optimisation’ in Table 4), as a sufficient
number of data points is required for a robust estimation. Following this, we instead optimised
the threshold for concepts that appear sufficiently in the holdout dataset; for the concepts that
occured in the Top-10% (‘Top-10% threshold optimisation’ in Table 4), as well as the concepts
that occur in the Top-1% (‘Top-1% threshold optimisation’ in Table 4). We also compared setting
the thresholds for each concept to a constant (‘Fixed threshold’ in Table 4).

4.3. Results & Discussion

4.3.1. Final architectures

The models for our concept detection submissions were ensembles of DenseNets (where each
was a DenseNet-161 initialised with the weights of an ImageNet checkpoint) trained according
to the following recipe. We first start by combining the training and validation sets, splitting that
into a holdout set used for threshold fine-tuning (10%). We randomly split the remaining data
into an 80%/20% split for training/validation. We train all the parameters of each DenseNet-161
using the Adam optimiser with a batch-size of 8 and a learning rate of 10−5, along with early-
stopping. The monitored metric was the validation F1-score. The average training time was
90 hours, where the selected epoch for each model was ≈ 210. We form an ensemble of these
models using majority voting. Finally our submissions, which use different thresholding and
ensemble approaches, are presented in Table 4. Our best scoring submission was an ensemble
of 43 DenseNet-161 models with Top-1% threshold optimisation.

4.3.2. Participant Rankings

The rankings amongst the participants of the concept detection task are shown in Table 5.
We managed an F1 score of 0.447, placing us third amongst the participants. Despite our best



Table 4
Submission history and associated F1 scores for each model.

Model Threshold selection F1

Ensemble of 43 DenseNet-161 Top-1% threshold optimisation 0.447
Ensemble of 43 DenseNet-161 Fixed threshold: 0.30 0.446
Ensemble of 11 DenseNet-161 Fixed threshold: 0.30 0.445
Ensemble of 11 DenseNet-161 Fixed threshold: 0.25 0.444
Ensemble of 5 DenseNet-161 Fixed threshold: 0.3 0.442
Ensemble of 5 DenseNet-161 Top-10% threshold optimisation 0.407
Ensemble of 5 DenseNet-161 100% threshold optimisation 0.406
Single DenseNet-161 Fixed threshold: 0.30 0.437
Single DenseNet-161 Fixed threshold: 0.50 0.433
Single DenseNet-161 100% threshold optimisation 0.396

efforts to account for rare concepts, our best model only predicted 107 out of the 8 734 available
concepts on the test set, as shown in Tables A1 and A2. Some of the most commonly predicted
concepts included modality (e.g., ‘X-Ray Computed Tomography’, ‘Plain x-ray’, and ‘Magnetic
Resonance Imaging’), body location (e.g., ‘Chest’, ‘Abdomen’, and ‘Neck’), body part (e.g., ‘Bone
structure of cranium’, ‘Lower Extremity’, and ‘Pelvis’), and colour (‘Yellow color’, ‘Green color’,
and ‘Blue color’). One research direction that could be explored is a mixture of experts [21]
with models that focus on different diagnostic procedures (e.g., TUI T060).

Table 5
Final ranking for the concept detection task. A higher colour saturation indicates a better score.

Group Name F1 Score Secondary F1 Rank

AUEB-NLP-Group 0.451 0.791 1
fdallaserra 0.451 0.822 2
CSIRO 0.447 0.794 3
eecs-kth 0.436 0.856 4
vcmi 0.433 0.863 5
PoliMi-ImageClef 0.432 0.851 6
SSNSheerinKavitha 0.418 0.654 7
IUST_NLPLAB 0.398 0.673 8
Morgan_CS 0.352 0.628 9
kdelab 0.310 0.412 10
SDVA-UCSD 0.308 0.552 11

5. Caption Prediction

In this section, we first describe the evaluation metrics and the methodology for the caption
prediction tasks. We then discuss the results of our models and end with a discussion about the
performance of our best model versus those of the other participants.



Table 6
Caption prediction metrics.

Metric Official metric Description

CLEF-BLEU ✓ Average score of BLEU-1, BLEU-2, BLEU-3, and BLEU-4 [22].
CLEF-ROUGE-1 ✓ ROUGE-n with unigrams [23].
CLEF-METEOR ✓ METEOR v1.5 [24].
CLEF-CIDEr ✓ CIDEr [25].
CLEF-SPICE ✓ SPICE [26].
CLEF-BERTScore ✓ BERTScore with microsoft/deberta-xlarge-mnli [27].
BLEU-1 ✗ BLEU-n with unigrams [22].
BLEU-2 ✗ BLEU-n with bigrams [22].
BLEU-3 ✗ BLEU-n with trigrams [22].
BLEU-4 ✗ BLEU-n with four-grams[22].
METEOR ✗ METEOR v1.5 [24].
ROUGE-L ✗ ROUGE with longest common subsequence-based statistics [28].
CIDEr ✗ CIDEr [25].

5.1. Evaluation Metrics

The metrics for evaluating the caption prediction task are shown in Table 6. For the official
metrics used by the competition organisers, which we designate as CLEF-*, the following
formatting was applied to the predicted and ground truth captions before evaluation:

1. Lowercased: The caption was first converted to lower-case.
2. Remove punctuation: All punctuation was then removed and the caption was tokenized

into its individual words.
3. Remove stopwords: Stopwords were then removed using NLTK’s English stopword list

(NLTK v3.2.2).
4. Lemmatization: Lemmatization was next applied using spaCy’s Lemmatizer (with spaCy

model en_core_web_lg).

For the remaining metrics, only the first two formatting steps were applied (lower-cased and
remove punctuation), and only to the ground truth captions (the models were relied upon to
generate captions with the correct formatting, as they were trained on ground truth captions
with the same formatting). These non-official metrics were only applied to the validation set of
the caption prediction task.

5.2. Methodology

First, we describe the image pre-processing, followed by the caption formatting and generation,
the models, and model fine-tuning.

5.2.1. Caption Formatting and Generation

For the training and validation sets, the ground truth captions were converted to lower-case
and had punctuation removed. When generating the captions during validation and testing, a
beam search with a beam size of four and a maximum number of 128 subwords was used.



5.2.2. Encoder-to-Decoder Models

The encoder-to-decoder models investigated for caption prediction are listed below. The input
to the encoder is a medical image. The output of the encoder is fed to the cross-attention module
of the decoder, which then generates a caption in an autoregressive fashion. It should be noted
that each model employs a linear layer that projects the last hidden state of the encoder to the
hidden size of the decoder. It also should be noted that the image pre-processing that we used
for caption prediction differs slightly to that used in Subsection 4.2.1. The image was instead
resized to a size of R3×384×384. During training, the image was rotated at an angle sampled
from 𝒰 [−5∘, 5∘] and no random horizontal or vertical flipping was applied.

ViT2BERT — ViT (86M parameters) is the encoder [29]. It was warm-started with a checkpoint
pre-trained on ImageNet-22K (14M images, 21 843 classes) at a resolution of 224×224
and then additionally trained on ImageNet-1K (1M images, 1 000 classes) at resolution
of 384×384. BERT (110M parameters) is the decoder, which is pre-trained on uncased
BookCorpus [30] and Wikipedia articles using self-supervised learning [31]. Both ViT
and BERT are 12 layers with a hidden size of 768.

ViT2BERT (remove stopwords) — Identical to ViT2BERT, except that stopwords are addi-
tionally removed from the ground truth captions of the training and validation sets.

ViT2PubMedBERT — Identical to ViT2BERT, except that PubMedBERT (110M parameters) is
the decoder. Its main difference to BERT is the pre-training data: uncased abstracts from
PubMed (4.5B words) and articles from PubMed Central (13.5B words).

ViT2DistilGPT2 — Identical to ViT2BERT, except that DistilGPT2 (82M parameters) is the
decoder. It is pre-trained using knowledge distillation where DistilGPT2 was the student
and GPT2 was the teacher. OpenWebText, a reproduction of OpenAI’s WebText corpus,
was used as the pre-training data [32]. DistilGPT2 includes 6 layers with a hidden size of
768.

CvT2DistilGPT2 — Identical to ViT2DistilGPT2, except that CvT-21 (32M parameters) is the
encoder. CvT-21 was warm-started with an ImageNet-22K checkpoint with a resolution
of 384×384 [33]. It has three stages, with a combined 21 layers.

CvT2DistilGPT2 (retain aspect ratio) — Identical to CvT2DistilGPT2, except that the image
is first resized using bilinear interpolation so that its smallest side has 384 pixels and
its largest side is set such that it maintained the aspect ratio. Next, the resized image
is cropped to a size of R3×384×384. The crop location was random during training and
centred during testing.

CvT2DistilGPT2·MIMIC-CXR — This is CvT2DistilGPT2 warm-started with a MIMIC-CXR
checkpoint [34, 35]. The checkpoint was not additionally fine-tuned with reinforcement
learning on MIMIC-CXR.

CvT2DistilGPT2·MIMIC-CXR (no. repeat n-gram size: 2) — Identical to
CvT2DistilGPT2·MIMIC-CXR, except that a penalty was applied during caption



generation to the probability of tokens to prevent an n-gram from appearing more than
once in a caption (the penalty was realised by setting a token’s probability to zero). An
n-gram size of two was used.

CvT2DistilGPT2·MIMIC-CXR (no. repeat n-gram size: 3) — Identical to
CvT2DistilGPT2·MIMIC-CXR (no. repeat n-gram size: 2), except that an n-gram
size of three was used.

5.2.3. Fine-tuning

Teacher forcing was used for fine-tuning [36]. Each model was implemented in PyTorch version
1.10.1 and trained with 4×NVIDIA P100 16GB GPUs. To reduce memory consumption, we
employed PyTorch’s automatic mixed precision (a combination of 16-bit and 32-bit floating-point
variables). For fine-tuning, the following configuration was used: categorical cross-entropy as
the loss function; a mini-batch size of 32; early stopping with a patience of 20 epochs and a
minimum delta of 1𝑒− 4; AdamW optimiser for gradient descent optimisation [37]; an initial
learning rate of 1𝑒−5 and 1𝑒−4 for the encoder and all other parameters, respectively, following
[38]. All other hyperparameters for AdamW were set to their defaults. A model’s best epoch
was selected using the highest validation BLEU-4 score. The epochs that were selected based on
this criterion for each model were: epoch 5 for ViT2BERT and ViT2BERT (remove stopwords),
epoch 7 for ViT2PubMedBERT and CvT2DistilGPT2, and epoch 8 for ViT2DistilGPT2 and
CvT2DistilGPT2·MIMIC-CXR.

5.3. Results & Discussion

5.3.1. Model Performance

Here, we evaluate the performance of each encoder-to-decoder model to determine our best
submission for the caption prediction task. The results of each encoder-to-decoder model are
presented in Tables 7 (auxiliary metrics) and 8 (official metrics). One important consideration
for this task is the multiple formatting steps applied to the predicted and ground truth captions
before evaluation is performed with the official metrics, as described in Subsection 5.1. Hence,
we wanted to determine if training with formatted ground truth captions is advantageous.
Removing stopwords from the ground truth captions during training of ViT2BERT improved
the validation CLEF-BLEU and CLEF-ROUGE-1 scores, as well as the test CLEF-BLEU score.
However, it drastically decreased the test CLEF-BLEU score. Due to this, we abandoned this
formatting strategy. Multiple strategies had a negligible impact on performance. This included
the choice of encoder (ViT vs. CvT), as well as maintaining the aspect ratio of the medical
images during image pre-processing.

When examining the performance of the decoders, BERT attained the highest test CLEF-BLEU
score, while PubMedBERT scored the highest on test CLEF-ROUGE-1 (i.e., ViT2PubMedBERT
vs. ViT2BERT and ViT2DistilGPT2). This indicates that the natural language understanding
pre-training tasks of BERT and PubMedBERT are more transferable to the caption prediction
tasks than the natural language generation pre-training strategies of DistilGPT2.



Table 7
Caption prediction validation scores for each of the encoder-to-decoder models using the non-official
metrics. (The row in grey indicates that the ground truth captions were different during evaluation and
are thus uncomparable with the other rows). A higher colour saturation indicates a better score.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

ViT2BERT 0.223 0.124 0.066 0.038 0.091 0.202 0.192
remove stopwords 0.155 0.080 0.041 0.021 0.078 0.169 0.230

ViT2PubMedBERT 0.228 0.126 0.068 0.039 0.091 0.204 0.203
ViT2DistilGPT2 0.214 0.118 0.064 0.036 0.087 0.196 0.203
CvT2DistilGPT2 0.215 0.119 0.064 0.036 0.087 0.198 0.202

retain aspect ratio 0.215 0.119 0.065 0.037 0.088 0.198 0.208
CvT2DistilGPT2·MIMIC-CXR 0.221 0.122 0.067 0.039 0.090 0.201 0.213

no. repeat n-gram size: 2 0.197 0.110 0.061 0.035 0.090 0.204 0.233
no. repeat n-gram size: 3 0.204 0.115 0.063 0.037 0.092 0.205 0.229

Table 8
Caption prediction validation and test scores for each of the encoder-to-decoder models on the official
metrics. Note that only the CLEF-BLEU and CLEF-ROUGE-1 scores were made available for each of
the submissions, the remaining official metrics were only used with the best submission in Table 10. A
higher colour saturation indicates a better score. Yellow designates scores on the validation set, while
blue indicates scores on the test set.

Model
Validation Set Test Set

CLEF-BLEU CLEF-ROUGE-1 CLEF-BLEU CLEF-ROUGE-1

ViT2BERT 0.004 0.182 0.311 0.181
remove stopwords 0.005 0.188 0.297 0.186

ViT2PubMedBERT 0.004 0.188 0.309 0.188
ViT2DistilGPT2 0.004 0.183 0.306 0.181
CvT2DistilGPT2 0.005 0.181 0.309 0.182

retain aspect ratio 0.005 0.183 0.310 0.181
CvT2DistilGPT2·MIMIC-CXR 0.006 0.188 0.310 0.181

no. repeat n-gram size: 2 0.005 0.195 0.308 0.197
no. repeat n-gram size: 3 0.006 0.194 0.311 0.197

When comparing CvT2DistilGPT2 to CvT2DistilGPT2·MIMIC-CXR, it can be seen that warm-
starting with the MIMIC-CXR checkpoint (a chest X-ray checkpoint) improved the validation
score for each metric. As highlighted in Table 1, ‘X-ray’ was the second most represented
modality in the dataset. This gives one reason as to why warm-starting with the MIMIC-CXR
checkpoint was beneficial. However, the gains experienced on the validation set did not translate
to an improvement in the test scores, with CvT2DistilGPT2 and CvT2DistilGPT2·MIMIC-CXR
performing similarly.

When observing the captions generated by CvT2DistilGPT2·MIMIC-CXR, for example, in the
first row in Table 9, there were repetitions of𝑛-grams. This was evident in the generated captions
of the other models as well. To mitigate this issue, we applied a penalty to the probabilities of
the subword tokens in order to prevent an 𝑛-gram from being generated more than once, which
is detailed in Subsection 5.2.2. It can be seen that an 𝑛-gram size of three successfully removed
the repetitions. While this improved the validation and test CLEF-ROUGE-1 scores in Table 8,
alarmingly, it had a minimal impact on the CLEF-BLEU score. This highlights the fragility of



BLEU — the metric did not penalise the score due to the repetitions. A more aggressive schema,
i.e., an 𝑛-gram size of two, attained a test CLEF-ROUGE-1 score similarly to an 𝑛-gram size of
three; however, the CLEF-BLEU score was reduced. Hence, CvT2DistilGPT2·MIMIC-CXR with
no repetitions for an 𝑛-gram size of 3 was our best-performing caption prediction model.

Table 9
Generated captions for test example 092563. CvT2DistilGPT2·MIMIC-CXR would repeatedly generate
the same six-gram if a penalty was not applied to the word token probabilities during generation.

Model Generated caption

CvT2DistilGPT2·MIMIC-CXR

angiogram of the left subclavian artery occlusion of the left
subclavian artery occlusion of the left common carotid artery
occlusion of the left subclavian artery occlusion of the left sub-
clavian artery occlusion of the left subclavian artery occlusion
of the left subclavian artery occlusion of the left subclavian
artery occlusion of the left subclavian artery occlusion of the
left subclavian artery

CvT2DistilGPT2·MIMIC-CXR
no. repeat n-gram size: 2

angiogram of the left subclavian artery after stent implanta-
tion

CvT2DistilGPT2·MIMIC-CXR
no. repeat n-gram size: 3

angiogram of the left subclavian artery occlusion of the proxi-
mal leave anterior descend artery

5.3.2. Participant Rankings

The rankings amongst the participants of the caption prediction task are shown in Table 10.
IUST NLP LAB attained the highest CLEF-BLEU and CLEF-METEOR scores, placing them first
amongst the participants. However, their system produced the second-worst CLEF-CIDEr and
CLEF-SPICE scores and their mean ranking over all the metrics was 6.2. This indicates that
their performance, while optimal for CLEF-BLEU, did not generalise to the remaining metrics.

Table 10
Caption prediction scores for the best submission of each participant. The ranking is determined by the
participants’ CLEF-BLEU scores. The mean rank of each participant over all the metrics is given in the
last column. A higher colour saturation indicates a better score.

Participant
CLEF- CLEF- CLEF- CLEF- CLEF- CLEF-

Mean Rank
BLEU ROUGE-1 METEOR CIDEr SPICE BERTScore

IUST NLP LAB 0.483 0.142 0.093 0.030 0.007 0.561 6.2
AUEB-NLP-Group 0.322 0.166 0.074 0.190 0.031 0.599 5.0
CSIRO 0.311 0.197 0.084 0.269 0.046 0.623 2.2
vcmi 0.306 0.174 0.075 0.205 0.036 0.604 4.3
eecs-kth 0.292 0.116 0.062 0.132 0.022 0.573 7.7
fdallaserra 0.291 0.201 0.082 0.256 0.046 0.610 2.8
kdelab 0.278 0.158 0.074 0.411 0.051 0.600 4.3
Morgan CS 0.255 0.144 0.056 0.148 0.023 0.583 7.5
MAI ImageSem 0.221 0.185 0.068 0.251 0.039 0.606 5.0
SSN Sheerin Kavitha 0.160 0.043 0.023 0.017 0.007 0.545 10.0

Comparing our results (CSIRO) to that of the other participants, we attained the third-highest



CLEF-BLEU and CLEF-SPICE scores, the second-highest CLEF-ROUGE-1, CLEF-METEOR, and
CLEF-CIDEr scores, and the highest CLEF-BERTScore. We also attained the highest mean
ranking over all the metrics at 2.2. This suggests that our system, when considering all metrics,
outperformed the system of IUST NLP LAB.

The mean ranking of fdallserra suggests that, in fact, their system was second best. Moreover,
their system attained the highest CLEF-ROUGE-1 score. This highlights the importance of
considering multiple metrics when evaluating natural language generation systems, as purely
relying on a single metric, for example, CLEF-BLEU, can be misleading. We thus commend the
organisers of the caption prediction task for expanding on the number of metrics from previous
years. However, it should be noted that the model for each team was selected based on the best
CLEF-BLEU score, which could bias the mean rank.

6. Conclusion

In this work, we detailed our participation in the concept detection and caption prediction
subtasks of ImageCLEFmedical Caption 2022. For concept detection, we demonstrate the
effectiveness of the ensemble approach, as well as the performance gains from threshold tuning.
Despite our efforts, only a small portion of the concepts were predicted on the test set. This
could be due to the fact that a vast amount of the concepts are underrepresented in the training
set. For caption prediction, the important role that processing word token probabilities during
generation can play was highlighted. Here, we used a penalty to prevent 𝑛-gram repetitions,
which dramatically increased our CLEF-ROUGE-1 score. In future work, we aim to improve
performance on the caption prediction task by leveraging the concept detection task, following
the aim of the ImageCLEFmedical Caption challenge.
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Table A1
Concepts predicted by our final model on the test set.

Concept TUI TUI Description Name #predictions

C0040405 T060 Diagnostic Procedure X-Ray Computed Tomography 2804
C1306645 T060 Diagnostic Procedure Plain x-ray 1997
C0024485 T060 Diagnostic Procedure Magnetic Resonance Imaging 1504
C0041618 T060 Diagnostic Procedure Ultrasonography 1097
C0817096 T029 Body Location or Region Chest 1076
C0000726 T029 Body Location or Region Abdomen 718
C0002978 T060 Diagnostic Procedure angiogram 514
C0037303 T023 Body Part, Organ, or Organ Component Bone structure of cranium 306
C0023216 T023 Body Part, Organ, or Organ Component Lower Extremity 280
C0205129 T082 Spatial Concept Sagittal 261
C0221205 T080 Qualitative Concept Yellow color 240
C0030797 T023 Body Part, Organ, or Organ Component Pelvis 195
C0238767 T082 Spatial Concept Bilateral 192
C0242485 T169 Functional Concept Measurement 157
C1140618 T023 Body Part, Organ, or Organ Component Upper Extremity 134
C0037949 T023 Body Part, Organ, or Organ Component Vertebral column 107
C0046056 T109 Organic Chemical fluorodeoxyglucose F18 97
C0205131 T082 Spatial Concept Axial 96
C0225860 T023 Body Part, Organ, or Organ Component Left atrial structure 87
C0205143 T082 Spatial Concept Angular 85
C1699633 T060 Diagnostic Procedure PET/CT scan 84
C0225897 T023 Body Part, Organ, or Organ Component Left ventricular structure 82
C0226032 T023 Body Part, Organ, or Organ Component Anterior descending branch of left... 80
C0023884 T023 Body Part, Organ, or Organ Component Liver 80
C0225883 T023 Body Part, Organ, or Organ Component Right ventricular structure 76
C0243144 T039 Physiologic Function Uptake 75
C0225844 T023 Body Part, Organ, or Organ Component Right atrial structure 73
C0035190 T201 Clinical Attribute Residual volume 69
C0027530 T029 Body Location or Region Neck 62
C0309093 T109 Organic Chemical FLAIR (product) 62
C0006104 T023 Body Part, Organ, or Organ Component Brain 58
C0032743 T060 Diagnostic Procedure Positron-Emission Tomography 58
C0012751 T081 Quantitative Concept Distance 55
C0205132 T082 Spatial Concept Linear 53
C0032227 T047 Disease or Syndrome Pleural effusion disorder 49
C0444706 T080 Qualitative Concept Measured 36
C0021102 T074 Medical Device Implants 32
C1302256 T082 Spatial Concept Apical four chamber view 31
C0332575 T033 Finding Redness 29
C0034052 T023 Body Part, Organ, or Organ Component Pulmonary artery structure 27
C0005400 T023 Body Part, Organ, or Organ Component Bile duct structure 27
C0005682 T023 Body Part, Organ, or Organ Component Urinary Bladder 25
C0332583 T080 Qualitative Concept Green color 24
C1261316 T023 Body Part, Organ, or Organ Component Right coronary artery structure 23
C1260957 T080 Qualitative Concept Blue color 23
C0178602 T081 Quantitative Concept Dosage 23
C0015965 T018 Embryonic Structure Fetus 23
C0728985 T023 Body Part, Organ, or Organ Component Cervical spine 23
C3827002 T033 Finding Ground-glass opacities 23



Table A2
(Continued) Concepts predicted by our final model on the test set.

Concept TUI TUI Description Name #predictions

C0521530 T047 Disease or Syndrome Lung consolidation 18
C0040578 T023 Body Part, Organ, or Organ Component Trachea 17
C0037775 T082 Spatial Concept Spatial Distribution 15
C1302222 T082 Spatial Concept Parasternal long axis view 15
C1881277 T081 Quantitative Concept Isodose 14
C0003483 T023 Body Part, Organ, or Organ Component Aorta 13
C0031039 T047 Disease or Syndrome Pericardial effusion 12
C0025584 T023 Body Part, Organ, or Organ Component Metatarsal bone structure 12
C0026266 T047 Disease or Syndrome Mitral Valve Insufficiency 12
C0006141 T023 Body Part, Organ, or Organ Component Breast 11
C0454199 T081 Quantitative Concept Planning target volume 10
C0030274 T023 Body Part, Organ, or Organ Component Pancreas 10
C0026608 T026 Cell Component Motor Endplate 10
C0015813 T023 Body Part, Organ, or Organ Component Head of femur 10
C4331911 T169 Functional Concept M-Mode Ultrasound Mode 8
C0025062 T047 Disease or Syndrome Mediastinal Emphysema 8
C0038536 T046 Pathologic Function Subcutaneous Emphysema 7
C3829578 T033 Finding Hypoechoic Focus 7
C0024109 T023 Body Part, Organ, or Organ Component Lung 7
C0032005 T023 Body Part, Organ, or Organ Component Pituitary Gland 6
C0024687 T023 Body Part, Organ, or Organ Component Mandible 5
C0032326 T047 Disease or Syndrome Pneumothorax 5
C1711105 T109 Organic Chemical b-Hexachlorocyclohexane 5
C0014876 T023 Body Part, Organ, or Organ Component Esophagus 5
C0018563 T023 Body Part, Organ, or Organ Component Hand 5
C0000962 T023 Body Part, Organ, or Organ Component Bone structure of acetabulum 5
C0024091 T023 Body Part, Organ, or Organ Component Bone structure of lumbar vertebra 5
C0221198 T033 Finding Lesion 5
C0025526 T023 Body Part, Organ, or Organ Component Metacarpal bone 4
C0226054 T023 Body Part, Organ, or Organ Component Right pulmonary artery 4
C0442119 T082 Spatial Concept Intraoral approach 4
C0449381 T033 Finding Observation parameter 4
C0222601 T023 Body Part, Organ, or Organ Component Left breast 4
C0227613 T023 Body Part, Organ, or Organ Component Right kidney 4
C0018800 T033 Finding Cardiomegaly 3
C0205082 T033 Finding Severe (severity modifier) 3
C0016504 T023 Body Part, Organ, or Organ Component Foot 3
C0522510 T080 Qualitative Concept With intensity 3
C0227614 T023 Body Part, Organ, or Organ Component Left kidney 3
C0030647 T023 Body Part, Organ, or Organ Component Patella 2
C0005847 T023 Body Part, Organ, or Organ Component Blood Vessel 2
C0016642 T061 Therapeutic or Preventive Procedure Fracture Fixation, Internal 2
C0030288 T023 Body Part, Organ, or Organ Component Pancreatic duct 2
C0230431 T023 Body Part, Organ, or Organ Component Structure of right knee 2
C0021852 T023 Body Part, Organ, or Organ Component Intestines, Small 2
C0230461 T023 Body Part, Organ, or Organ Component Structure of left foot 2
C0022742 T023 Body Part, Organ, or Organ Component Knee 2
C0003956 T023 Body Part, Organ, or Organ Component Ascending aorta structure 2
C0040508 T061 Therapeutic or Preventive Procedure Total Hip Replacement (procedure) 2
C0013931 T061 Therapeutic or Preventive Procedure Embolization, Therapeutic 2
C0040184 T023 Body Part, Organ, or Organ Component Bone structure of tibia 2
C0013303 T023 Body Part, Organ, or Organ Component Duodenum 2
C0029130 T023 Body Part, Organ, or Organ Component Optic Nerve 1
C0205128 T082 Spatial Concept Vertical 1
C0934420 T030 Body Space or Junction Cephalometric nasion point 1
C1285498 T190 Anatomical Abnormality Vegetation 1
C1295725 T082 Spatial Concept Perpendicular axis 1
C0227481 T023 Body Part, Organ, or Organ Component Right lobe of liver 1
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