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Abstract
We describe our participation in the ImageCLEFmed Caption task of 2021. The task required participants
to automatically compose coherent captions for a set of medical images. To this end, we employed a
sequence-to-sequence model for caption generation, where its encoder and decoder were initialised
with pre-trained Transformer checkpoints. In addition, we investigated the use of Self-Critical Sequence
Training (SCST) (which offered a marginal improvement) and pre-training on five external medical
image datasets. Overall, our approach was kept intentionally general so that it might be applied to tasks
other than medical image captioning. AEHRC CSIRO placed third amongst the participating teams in
terms of BLEU score—with a score 0.078 worse than the first placed participant. Our best-performing
submission had the simplest configuration—it did not use SCST or pre-training on any of the external
datasets. An overview of ImageCLEFmed Caption 2021 is available at: https://www.imageclef.org/2021/
medical/caption.
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1. Introduction

For ImageCLEFmed caption 2021, teams were tasked with developing systems that could
automatically produce coherent captions for the entirety of a medical image [1, 2]. To succeed,
a system must not only identify medical concepts but also their interplay. A system that can
achieve this could improve the efficiency of radiologists’ interpretation. An example of an image
and its ground truth caption for ImageCLEFmed Caption 2021 is provided in Figure 1. Typical
medical image captioning approaches make use of either a sequence-to-sequence (seq2seq)
model to generate a caption for a medical image [3], or image retrieval, where it is assumed that
similar images have similar captions [4]. For our submissions, a seq2seq model was considered
only.

While medical data has many unique characteristics, general-purpose Natural Language Pro-
cessing (NLP) and Computer Vision (CV)methods have proven effective inmany domain-specific
medical tasks. In NLP, for example, general-domain self-supervised pre-training strategies—such
as Masked Language Modeling (MLM) and Next Sentence Prediction (NSP) used to produce
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(a) Medical image

“This image is a transverse evaluation of the blad-
der and right ureteral jet. Renal ultrasound stud-
ies also include evaluation of the ureterovesical
junction through Color Flow Doppler study of
fluid movement of the ureteral jet.”

(b) Ground truth caption

Figure 1: Training example synpic100306 from the ImageCLEFmed Caption 2021 dataset: (a) the medical
image and (b) its ground truth caption. The task was to develop an automated system that, given the
medical image, could predict the provided reference caption.

Bidirectional Encoder Representations from Transformers (BERT) [5]—have been success-
fully adapted to medical text. One instance is PubMedBERT [6]—a Transformer encoder [7]
pre-trained on PubMed articles using domain-specific self-supervised pre-training strategies.
Another example is the use of Transfer Learning (TL) to significantly improve medical image
classification accuracy on small datasets [8]. Here, a portion of a Convolutional Neural Network
(CNN) trained on ImageNet 2012 [9] (a general-domain image classification dataset) is fine-tuned
on the small amount of data for the medical image classification task.

A number of more recent NLP and CV machine learning techniques have not been investi-
gated on medical data. One such approach for sequence generation is the use of pre-trained
Transformer checkpoints to initialise both the encoder and the decoder of a seq2seq model [10].
Another method is the Vision Transformer (ViT)—a pre-trained Transformer checkpoint for
image classification, which takes 16x16 patches of the image as input [11]. Building from this, a
pre-trained ViT checkpoint was paired with a Transformer decoder to form a seq2seq model for
image captioning [12].

Motivated by previous adaptations of general-domain NLP and CV machine learning tech-
niques to medical data and the slew of recent techniques that have not been investigated on
medical data, we investigate a seq2seq model for medical image captioning that employs a
pre-trained ViT checkpoint as the encoder and the pre-trained PubMedBERT checkpoint as
the decoder. We also experiment with various pre-training and fine-tuning strategies, such as
additionally pre-training the encoder on a multi-label medical image classification task, as well
as fine-tuning the seq2seq model with Self-Critical Sequence Training (SCST) [13].

2. Task Description

2.1. Dataset

The focus for ImageCLEFmed Caption 2021 was to use real medical images and have participants
develop automated systems to predict natural language captions; evaluation was performed
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Seq2seqEncoder Decoder

Pre-training Fine-tuning

vit2mr t-0.1.1_5_e131 ? ? ?  (e132)

vit2mr t-0.1.2_2_e46 ? ? ?  (e14) ?  (e47)

vit2mr t-0.1.2_3_e91 ? ? ?  (e26) ?  (e92)

vit2mr t-0.1.3_5_e3 ? ? ?  (e26) ?  (e92) ?  (e4)

vit2mr t-0.1.4_2_e0 ? ? ?  (e147) ?  (e1)

mit2mr t-0.1.5_1_e1 ? ?  (e29) ? ?  (e31) ?  (e98) ?  (e2)

mit2mr t-0.1.7_1_e0 ? ?  (e2) ? ?  (e37) ?  (e77) ?  (e1)

mit2mr t-0.1.8_1_e1 ? ?  (e2) ? ?  (e27) ?  (e116) ?  (e2)

mit2mr t-0.1.9_1_e138 ? ?  (e29) ? ?  (e139)
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Figure 2: The stages of pre-training and fine tuning for each submission. The seq2seq model is formed
by combining ViT with PubMedBERT or MIT with PubMedBERT. The order of training is from left-to-
right; the MIT encoder is formed by additionally pre-training ViT on the medical image multi-label
classification task described in Section 3.2.1; pre-training on the ROCO dataset (described in Section
3.2.1) with TF occurs before fine-tuning with TF; fine-tuning with SCST occurs after fine-tuning with
TF. The epoch for each stage (signified by “e” followed by the epoch number) is selected using early
stopping, as described in Section 3.2. Note that the epoch specified in each submission identifier for the
final stage of training is offset by one. The selected epochs for ViT and PubMedBERT are not given,
as these are publicly available pre-trained checkpoints. L2 regularisation was used during the MIT
pre-training stage and for the ROCO pre-training stage with two of the submissions, where the used
regularisation terms are indicated in the legend on the top-left corner.

by comparing the predicted captions to the annotations provided by medical doctors (i.e. the
ground truth captions). Each example from the dataset consisted of a medical image and its
associated ground truth caption, as shown in Figure 1. The training, validation, and test sets
comprise of 2,756, 500, and 444 examples, respectively. We refer to the ImageCLEFmed Caption
2021 dataset as the task’s dataset henceforth.

2.2. Metrics

Each caption (predicted and ground truth) was pre-processed in the following way: The caption
was first converted to lower-case. All punctuation was then removed and the caption was
tokenized into its individual words. Stopwords were then removed using NLTK’s English
stopword list (NLTK v3.2.2). Stemming was next applied using NLTK’s Snowball stemmer
(NLTK v3.2.2). The score was then calculated as the average score of BLEU-1, BLEU-2, BLEU-3,
and BLEU-4 [14]. Note that the caption was always considered as a single sentence, even if it
contained several sentences. No smoothing function was used. All scores were summed and
averaged over the number of captions, giving the final score. One downside of using BLEU
for medical image caption evaluation is that it is a word overlap measure and may not capture
clinical correctness, as noted in [4].
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Figure 3: Transformer-based seq2seq model for medical image captioning. The red elements depict the
general path from medical image to the predicted caption. The encoder for each submission was either
ViT or MIT.

3. Methodology

The nine submissions for the AEHRC CSIRO team are described in Figure 2. In this section,
we describe the model architecture, the pre-training and fine-tuning strategy, as well as the
external pre-training datasets for each submission. Figure 2 helps the reader identify the stages
of pre-training and fine tuning for the encoder, decoder, and the seq2seq model that were used
for each submission, along with the epoch chosen for each stage.

3.1. Model

The same model architecture was used for each submission. An overview of the model is shown
in Figure 3. In terms of architecture, the encoder is identical to ViT [11, ViT-Base, Table 1] and
the decoder is identical to PubMedBERT [6]. Both ViT and PubMedBERT use 12 hidden layers,
each with a size of 768, an intermediate size of 3,072 [7, see 𝑑𝑓 𝑓 in Section 3.3], and 12 scaled
dot-product attention heads. Next, we describe the medical image pre-processing, followed by
the encoder and decoder.

Medical image pre-processing: A given medical image 𝑋 ∈ ℝ𝐶×𝑊×𝐻 (where 𝐶, 𝑊, and 𝐻
denote the number of channels, the width, and the height of the medical image, respectively)
is first resized using bilinear interpolation so that its smallest side has 416 pixels. Next, the
resized image is cropped to a size of ℝ3×384×384 (the size required for ViT), with the crop location
random during training and centered during testing. The cropped image is then split into a



set of non-overlapping patches—each of size ℝ3×16×16 (i.e., 576 non-overlapping patches). Each
patch is then flattened into a one-dimensional array of size ℝ768. A colour depth of 8-bits was
used for the images (where images with a higher colour depth were downsampled to 8-bits).

Encoder: The set of inputs given to the encoder consist of the projection of each patch and
the [CLS] embedding. The patch projections are formed by passing each flattened patch through
a learnable projection matrix: 𝑊 𝑒𝑛𝑐𝑜𝑑𝑒𝑟

𝑝𝑎𝑡𝑐ℎ ∈ ℝ768×768. The [CLS] embedding is learnt using matrix

𝑊 𝑒𝑛𝑐𝑜𝑑𝑒𝑟
𝑐𝑙𝑎𝑠𝑠 ∈ ℝ1×768 (where [CLS] is the classification token whose corresponding output is fed to

a classification head during pre-training). The corresponding output for the [CLS] embedding
forms an aggregate representation over all patches. Before the set of inputs are given to the
first ViT hidden layer, a position embedding is added to each element of the set. There are
577 position embeddings for the encoder, with position “0” reserved for the [CLS] embedding
and positions “1” to “576” reserved for the patch projections (which provide information about
the location of each patch within the medical image). Each position embedding is stored in a
learnable matrix: 𝑊 𝑒𝑛𝑐𝑜𝑑𝑒𝑟

𝑝𝑜𝑠𝑖𝑡 𝑖𝑜𝑛 ∈ ℝ577×768.
The weights for the encoder (including its embeddings and the patch projection) are initialised

using one of the pre-trained ViT checkpoints from [11]. This checkpoint has been pre-trained on
ImageNet21k [15] and then subsequently on ImageNet 2012 [9]. We also investigate additionally
pre-training this checkpoint on a multi-label medical image classification task; we denote this
Medical Image Transformer (MIT). The multi-label medical image classification task is comprised
of four datasets, as described in Section 3.2.1. The pre-trained checkpoint of either ViT or MIT is
used to initialise the encoder for the submissions in Figure 2, where a tick in the “MIT” column
indicates that MIT was used over ViT. Moreover, submission identifiers using the pre-trained
ViT checkpoint are labelled in Figure 2 starting with “vit”, while those using a pre-trained MIT
checkpoint have are labelled starting with “mit”.

Decoder: The weights of the decoder (along with its embeddings) are initialised using the pre-
trained PubMedBERT checkpoint [6]. We classify PubMedBERT as aMedical Report Transformer
(MRT)—a Transformer that has been pre-trained on medical text (in this case medical literature)
and is suitable for generating medical reports. The output of the last hidden layer of the encoder
is fed to each decoder hidden layer via a randomly initialised multi-head cross-attention module,
which is inserted between the masked multi-head self-attention module and the Feedforward
Neural Network (FNN) module of each layer [7, Section 3.1, Decoder]. PubMedBERT has a
vocabulary size of 30,522, comprising subword units. When feeding a subword unit to the
encoder, it is first converted to its corresponding token index, and then subsequently into a
token embedding. Each token embedding is stored in learnable matrix 𝑊 𝑑𝑒𝑐𝑜𝑑𝑒𝑟

𝑡𝑜𝑘𝑒𝑛 ∈ ℝ30,522×768.
Next, a position and a segment embedding are added to the token embedding. The position

embedding indicates the location of the subwordwithin the caption. Amaximumof 512 positions
are used for PubMedBERT, with each position embedding stored in learnable matrix 𝑊 𝑑𝑒𝑐𝑜𝑑𝑒𝑟

𝑝𝑜𝑠𝑖𝑡 𝑖𝑜𝑛 ∈
ℝ512×768. As only one caption is generated per medical image (even though PubMedBERT
is pre-trained using two segments), the embedding for segment “0” will only be used. Each
segment embedding is stored in learnable matrix 𝑊 𝑑𝑒𝑐𝑜𝑑𝑒𝑟

𝑠𝑒𝑔𝑚𝑒𝑛𝑡 ∈ ℝ2×768.
When generating a caption, the token [BOS] (beginning of sentence) is first fed to output the



first subword of the caption. Caption generation finishes once the decoder generates the [EOS]
token. Each submission used PubMedBERT, as shown by the submission identifiers in Figure 2
(i.e. “vit2mrt” and “mit2mrt”), where “mrt” indicates that the decoder is an MRT, where, in this
case, PubMedBERT is the MRT. During testing, the maximum amount of subwords that the
decoder could generate was set to 128. Beam search was also used, with a beam size of eight.
Additionally, all n-grams of size three were only allowed to occur once.

3.2. Pre-training and fine-tuning

Next, we describe the pre-training and fine-tuning strategies for the submissions. Here, fine-
tuning refers to training on the task’s dataset. Pre-training refers to training on other, external
datasets we selected; this was done before the fine-tuning stage. Teacher Forcing (TF) with
categorical cross entropy loss was used to fine-tune each seq2seq model on the task’s dataset
[16]. We also investigate additionally fine-tuning the seq2seq models (which have already been
fine-tuned using TF) with Self Critical Sequence Training (SCST) [13]. Submissions that were
fine-tuned with TF and then SCST have a tick in the “SCST” column of Figure 2.

For pre-training the seq2seq models, we used the Radiology Objects in COntext (ROCO)
medical image captioning dataset (described in Section 3.2.1) with TF—before fine-tuning on
the task’s dataset. A tick in the “ROCO” column of Figure 2 signifies if this stage of pre-training
was conducted for a submission.

The AdamW optimiser [17] was used for gradient descent optimisation during pre-training
and fine-tuning. A learning rate of 1𝑒 − 7 was used for fine-tuning on the task’s dataset with
SCST. A learning rate of 5𝑒 − 5 and a linear warm-up of 10,000 training steps from a learning
rate of zero was used when pre-training the MITs, pre-training on ROCO with TF, and when
fine-tuning on the task’s dataset with TF. All other hyperparameters for AdamW were set
to their defaults. For the pre-training strategy in [11], L2 regularisation (with a term of 0.9)
helped to prevent overfitting the ViT during pre-training. Motivated by this, we investigated L2
regularisation for pre-training only (i.e., for pre-training the MITs and when pre-training on
ROCO using TF). We investigated an L2 regularisation term with two of the submissions, as
shown by the legend in Figure 2.

A mini-batch size of 64 was used to pre-train each MIT, to pre-train on ROCO with TF, and
to fine-tune on the task’s dataset with TF. A mini-batch size of eight was used to fine-tuning on
the task’s dataset with SCST. For epoch selection at each stage of pre-training and fine tuning
in Figure 2, early stopping with a patience of five was used. The validation micro F1 score was
the monitored metric for early stopping with each MIT and the validation BLEU score (BLEU is
described in Section 2.2) was the monitored metric for early stopping with the seq2seq models.
For submission vit2mrt-0.1.1_5_e131 , the early stopping criteria was not enforced until epoch
50, as the BLEU score did not increase from zero until after this epoch. When fine-tuning on the
task’s dataset using SCST, the maximum amount of subwords that the decoder could generate
was set to 32 due to memory restrictions. Moreover, greedy search was used (i.e., a beam size of
1) when generating the baseline for SCST [13].



3.2.1. Pre-training datasets

A number of external medical image datasets were used to pre-training the MIT, to take
advantage of any stored knowledge about medical images when fine-tuning on the task’s
dataset. Specifically, four medical image multi-label classification datasets were identified; these
are shown in Table 1. While CheXpert and MURA included validation sets, test sets were
not available with any of the four datasets. We refrain from using these validation sets as
the CheXpert validation set has been used as a test set previously [18]. Instead, 5% of each
training set was selected and removed to form a validation set. Together, the datasets have
325 classes, 482,197 training examples, and 25,377 validation examples. Given the number of
classes, the weights of the classification head for the pre-trained ViT checkpoint were replaced
with randomly-initialised learnable weight matrix 𝑊 𝑒𝑛𝑐𝑜𝑑𝑒𝑟

ℎ𝑒𝑎𝑑 ∈ ℝ768×325, before pre-training on
the medical image multi-label classification task to form MIT. The number of classes and the
number of examples for each dataset are detailed in the table

Table 1
Summary of the number of examples in the training and validation splits for the four medical image
multi-label classification datasets, as well as the number of classes.

Dataset Training split Validation split Classes

PadChest 152,787 8,041 254
CheXpert 212,244 11,170 42
ChestX-ray14 82,198 4,326 15
MURA 34,968 1,840 14

Total 482,197 25,377 325

• PadChest includes 160,828 chest X-rays obtained from 67,000 patients of the San Juan
Hospital (Spain) from 2009 to 2017 [19]. Each X-ray has an associated report produced by a
radiologist. From these reports, labels were extracted manually by trained physicians (for
27% of the X-rays) and automatically (for 73% of the X-rays) using a supervised method.
The labels covered six different position views, 174 different radiographic findings, 19
differential diagnoses, and 104 anatomic locations. The labels were then organised into a
hierarchical taxonomy and mapped to Unified Medical Language System (UMLS) Concept
Unique Identifier (CUI) codes. For our work, the considered 254 classes were derived from
the labelCUIS , LocalizationsCUIS , Modality_DICOM , and the ViewPosition_DICOM labels de-
scribed in [19, Table 11], where the Digital Imaging and Communications in Medicine
(DICOM) fields were extracted from the X-ray. We found that 33 of the images were
corrupt and were thus excluded.1,2

• TheCheXpert training set contains 223,414 chest radiographs of 65,240 patients from the
Stanford Hospital [18]. The studies were performed between October 2002 and July 2017.
An automatic system was used to extract 14 observations from the associated radiology

1The corrupt filenames are available at: https://github.com/anicolson/supplementary/blob/main/padchest_
corrupt.txt

2PadChest is available at: http://bimcv.cipf.es/bimcv-projects/padchest/

https://github.com/anicolson/supplementary/blob/main/padchest_corrupt.txt
https://github.com/anicolson/supplementary/blob/main/padchest_corrupt.txt
http://bimcv.cipf.es/bimcv-projects/padchest/


reports (no finding, enlarged cardiom, cardiomegaly, lung lesion, lung opacity, edema,
consolidation, pneumonia, atelectasis, pneumothorax, pleural effusion, pleural other, fracture,
and support devices). Each observation class was rated as either positive, uncertain, or
negative, thus resulting in 42 classes.3

• ChestX-ray14 contains 86,524 chest X-rays (collected from 1992 to 2015) concerned with
common thorax diseases [20]. It consists of 15 disease labels (atelectasis, cardiomegaly,
effusion, infiltration,mass, nodule, pneumonia, pneumothorax, consolidation, edema, emphy-
sema, fibrosis, pleural thickening, and hernia). The labels were mined from the associated
radiological reports of the X-rays.4

• The MURA training set comprises of 36,808 musculoskeletal radiographs from 13,457
studies of 11,184 patients, where each study is manually labelled by radiologists as either
normal or abnormal [21]. Each radiograph concerns one of seven sections of the body
(elbow, finger, hand, humerus, forearm, shoulder, or wrist), where each is classed as either
normal or abnormal, resulting in 14 total classes. MURA is a multi-class classification
task unlike the previous datasets.5

The ROCO dataset was used to pre-train the seq2seq models before fine-tuning, as depicted
in Figure 2. ROCO comprises of image-caption pairs from PubMed Central articles, where
compound, multi-pane, and non-radiology images were removed using an automatic system
[22]. The ROCO training and validation sets contain 65,450 and 8,180 examples, respectively.
The ROCO dataset contains several medical imaging modalities including computer tomogra-
phy, ultrasound, X-ray, fluoroscopy, positron emission tomography, mammography, magnetic
resonance imaging, and angiography.6

4. Results and discussion

The BLEU scores for each submission on the validation and test sets of the task’s dataset are
shown in Table 2.7 Submission vit2mrt-0.1.1_5_e131 attained the highest test score. This
submission had the simplest configuration—no regularisation, no SCST, no ROCO pre-training,
and no MIT pre-training. This indicates that the additional steps considered for the other
configurations were not suited to the task’s dataset. One possible explanation is the small size
of the task’s dataset.

Another observation is the large discrepancy between the validation and test scores. This
indicates a significant difference between the examples of the two sets or that the submissions
were overfitted to the training and/or validation sets. Additionally, the validation score was
an inconsistent predictor of which submission would achieve the highest test score. While
submission vit2mrt-0.1.2_2_e46 attained the highest test score, it was outperformed bymultiple
submissions in terms of validation score. In fact, submission vit2mrt-0.1.3_5_e3 attained the

3CheXpert is available at: https://stanfordmlgroup.github.io/competitions/chexpert/
4MURA is available at: https://nihcc.app.box.com/v/ChestXray-NIHCC
5MURA is available at: https://stanfordmlgroup.github.io/competitions/mura/
6ROCO is available at: https://github.com/razorx89/roco-dataset
7Note that submission vit2mrt-0.1.2_2_e46was a preliminary submission where the incorrect epoch was selected

with early stopping due to a rounding error of the monitored metric score.

https://stanfordmlgroup.github.io/competitions/chexpert/
https://nihcc.app.box.com/v/ChestXray-NIHCC
https://stanfordmlgroup.github.io/competitions/mura/
https://github.com/razorx89/roco-dataset


highest validation score, which had a configuration that employed ROCO pre-training and
SCST, but no regularisation or MIT pre-training.

Using L2 regularisation during pre-training had a negative impact on performance, where
both mit2mrt-0.1.7_1_e0 and mit2mrt-0.1.8_1_e1 produced worse validation and test scores
than mit2mrt-0.1.5_1_e1 . A regularisation term of 0.9 (mit2mrt-0.1.8_1_e1) was able to attain
higher validation and test scores than a term of 0.5 (mit2mrt-0.1.7_1_e0); however, this could
be due to submission mit2mrt-0.1.8_1_e1 completing more epochs of fine-tuning, as shown in
Figure 2.

The impact of the medical image multi-label classification task for MIT pre-training was
inconclusive. Comparing submission vit2mrt-0.1.1_5_e131 to mit2mrt-0.1.9_1_e138 , using an
MIT produced higher validation scores but lower test scores than ViT. Oppositely, employing an
MIT over a ViT resulted in a lower validation score, but a higher test score—when comparing
submission vit2mrt-0.1.3_5_e3 to mit2mrt-0.1.5_1_e1 . It should be emphasised that themedical
images that largely make up the medical image multi-label classification task dataset are chest
X-rays—whereas those in the task’s dataset, as well as ROCO, are more varied in modality and
location. This suggests that the datasets used for the medical image multi-label classification
task were not suited to the subsequent stages of pre-training and fine-tuning depicted in Figure
2.

The impact of using ROCO to pre-train the seq2seq models before fine-tuning was also
inconclusive. Comparing submission vit2mrt-0.1.1_5_e131 to vit2mrt-0.1.2_3_e91 , ROCO
pre-training increased the validation score and decreased the test score. However, pre-training
on ROCO substantially reduced the number of epochs until convergence during fine-tuning.
Note that medical image captioning datasets derived from PubMed Central articles have been
previously criticised for their significant amount of noise [4]. This could mean that pre-training
on ROCO may be harmful to performance.

SCST has been effective for medical image captioning previously [3]. Here, we note that
SCST is sensitive and can be difficult to attain stable training. Comparing submission vit2mrt-
0.1.1_5_e131 to vit2mrt-0.1.4_2_e0 , SCST substantially decreased the validation and test scores.
This was likely due to the learning rate being too high for this configuration. Oppositely, SCST

Table 2
Results for each submission of the AEHRC CSIRO team for the ImageCLEFmed Caption 2021 task. The
submissions are sorted by their test scores. The best validation and test scores are in boldface.

Submission identifier Val. BLEU Test BLEU

vit2mrt-0.1.1_5_e131 0.836 0.432
mit2mrt-0.1.5_1_e1 0.856 0.430
vit2mrt-0.1.3_5_e3 0.860 0.426
vit2mrt-0.1.2_3_e91 0.842 0.423
mit2mrt-0.1.9_1_e138 0.844 0.419
mit2mrt-0.1.8_1_e1 0.830 0.416
vit2mrt-0.1.4_2_e0 0.736 0.415
mit2mrt-0.1.7_1_e0 0.817 0.405
vit2mrt-0.1.2_2_e46 0.821 0.388



improved both validation and test scores when comparing submission vit2mrt-0.1.2_3_e91 to
vit2mrt-0.1.3_5_e3 , indicating that the learning rate was suitable for this configuration.

5. Conclusion

For ImageCLEFmed Caption 2021, the performance of submission vit2mrt-0.1.1_5_e131 placed
the AEHRC CSIRO team third—with a score 0.078 worse than the first placed participant.
This indicates that utilising pre-trained Transformer checkpoints to initialise the encoder and
decoder of a seq2seq model is a promising approach for this task. However, the impact of the
selected pre-training data was unclear; pre-training the seq2seq model with ROCO produced
inconclusive results. Instead of ROCO, an image-caption dataset derived from real medical
images and their associated radiologists’ reports—such as MIMIC-CXR [23]—is recommended.
The impact of the medical image multi-label classification task was also inconclusive, where
its medical images were likely too dissimilar to those from ROCO and the task’s dataset. The
impact of SCST and L2 regularisation were clearer, with SCST providing a small improvement
when configured correctly and the used L2 regularisation terms resulting in a decrease in
performance. In future work, we aim to conduct a more thorough investigation of the proposed
approach—to better adapt it to medical image captioning. At the same time, our overall approach
has been intentionally kept general so that it might be applied to tasks other than medical image
captioning.
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