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ABSTRACT
When conducting systematic reviews, medical researchers heavily
deliberate over the final query to pose to the information retrieval
system. Given the possible query variations that they could con-
struct, selecting the best performing query is difficult. This mo-
tivates a new type of query performance prediction (QPP) task
where the challenge is to estimate the performance of a set of query
variations given a particular topic. Query variations are the reduc-
tions, expansions and modifications of a given seed query under
the hypothesis that there exists some variations (either generated
from permutations or hand crafted) which will improve retrieval
effectiveness over the original query. We use the CLEF 2017 TAR
Collection, to evaluate sixteen pre and post retrieval predictors
for the task of Query Variation Performance Prediction (QVPP).
Our findings show the IDF based QPPs exhibits the strongest cor-
relations with performance. However, when using QPPs to select
the best query, little improvement over the original query can be
obtained, despite the fact that there are query variations which
perform significantly better. Our findings highlight the difficulty in
identifying effective queries within the context of this new task, and
motivates further research to develop more accurate methods to
help systematic review researchers in the query selection process.

1 INTRODUCTION
Systematic reviews form the cornerstone of evidence basedmedicine,
aiming to answer complex medical questions based on all evidence
currently available [20]. The process of creating a systematic re-
view follows a strict protocol, where medical health professionals,
alongside information specialists such as librarians, are typically
required to formulate a search strategy a priori that defines the
criteria for: (i) what will be included and excluded in the review
(i.e. relevance criteria); (ii) what sources will be used (i.e. databases
that will be searched); and (iii) what queries will be issued to each
source. Depending on the protocol, the queries are often submitted
for review to a panel of peers to ensure that the queries are appropri-
ate, exhaustive, and not biased. However, this process is somewhat
subjective, mainly driven by expertise rather than evidence. In this
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paper, we consider the task of Query Variation Performance Pre-
diction (QVPP) as a means to help quantify the quality of queries
formulated for systematic reviews. It is envisaged that QVPP could
help both the medical health professionals in selecting effective
queries, and the panel when reviewing such queries. Unlike the
traditional Query Performance Prediction (QPP) task [5], where the
performance of queries across different topics is estimated, QVPP
attempts to estimate the performance of queries for the same topic.
Thus, it is an open question how well current performance predic-
tors are suited in this new context. In this paper, we investigate the
applicability of QPPs for estimating the effectiveness of query vari-
ations in the context of medical systematic reviews. We examine
16 performance predictors (12 pre-retrieval, and 4 post-retrieval) to
determine which QPPs provide the best estimates of effectiveness.
Our experiments are conducted using the CLEF 2017 Technology
Assisted Review (TAR) track collection [10]. We compare the ability
of predictors to predict the performance across topics (i.e. QPP task)
and effectiveness of predictors for identifying query variations that
are better than the original query (i.e. QVPP task). For this study,
we felt it was appropriate to use the title as the seed query, rather
than the Boolean query associated with each topic, because the QPP
methods employed were not designed to handle Boolean semantics.
We leave this direction for further work.

2 BACKGROUND AND RELATEDWORK
2.1 Search for Systematic Reviews
The processes of compiling, maintaining and updating a systematic
review is lengthy and methodical [22]. Once a research question
has been formed, the reviewers define search strategies outlining
what should and should not be included in the review. This strategy
is used to define the Boolean query to retrieve citations (i.e. the title,
abstract, and meta-data) from medical databases. It is common for
systematic reviews to use Boolean queries which are formulated
iteratively with the help of information specialists (i.e. librarians).
Once an appropriate search strategy is formulated, the reviewers
screen all of the retrieved citations to determine which ones can
potentially be included in the review. The query is central to a
systematic review as it defines how many citations the review-
ers must screen for inclusion, impacting the time and cost of the
review [11, 20]. The selection of a query that optimises retrieval
effectiveness can reduce the time and effort needed for reviewers
to spend screening citations. Most work has focused on devising
retrieval methods specific to systematic reviews to minimise the
number of citations to screen [4, 11, 19]. In the context of systematic
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reviews, however, there has been no work that explored identifying
potentially better queries (or, in the case of this work, variations),
though this has been explored within other search tasks. For exam-
ple, among many others, Ozertem et al. [16] investigated a learning
to rank approach for query suggestion for web queries. In the medi-
cal domain, Koopman et al. have explored the effectiveness of query
variations with respect to the task of clinical trial retrieval and used
regression on QPPs to determine the effectiveness of queries [13].
Previous work by Karimi et al. [11] has shown that non-Boolean
queries can outperform typical Boolean queries (i.e those used in
systematic reviews). Additionally, because it is unclear how to ap-
ply current QPP methods to Boolean queries, our investigation
focuses on the effectiveness of QPPs to identify potential query
variations within the context of searching systematic reviews with
non-Boolean queries.

2.2 Query Performance Prediction
Broadly speaking, QPP methods can be considered as either (i) pre-
retrieval, or (ii) post-retrieval. Pre-retrieval predictors use statis-
tics about queries and the collection in order to make a prediction.
Post-retrieval predictors use the results, such as the retrieval
status value and rank of documents to make a prediction about
the effectiveness of a query. Both pre-retrieval and post-retrieval
QPPs are evaluated in the same way: the scores of the QPPs are
compared against a retrieval effectiveness evaluation score such
as mean average precision (MAP). In standard QPP evaluation, the
linear coefficient correlation (Pearson’s r ) is computed between
the scores of a QPP measure and a retrieval evaluation measure.
Strong correlations lead to the hypothesis that they are effective.
Hauff et al. [6] have found that this correlation is often insufficient
and does not accurately reflect the performance of a query for a
retrieval system, or that the correlation is high only for specific
tasks; however, no solutions to this problem have been proposed.
While the main task of this study is to use QPPs to identify and
rank effective queries, we include the correlation for comparison
to previous studies and to show the drawbacks of using it as an
evaluation strategy for the QVPP task.

3 METHOD
The goal of this study is to evaluate query performance predictors
in the task of QVPP — and to determine whether it is possible to
identify better performing queries over the original variation seed
queries. As part of our study, we employ sixteen commonly used
pre-retrieval and post-retrieval QPPs. Query variations are gen-
erated for each topic to provide the pool of possible queries. The
QVPP task can be broken down into three subtasks: (S1) ranking
the query variations according to estimated retrieval effectiveness,
(S2) identifying a better query variation than the seed query, (S3)
identifying the best query variation. These three subtasks will iden-
tify how correlated QPPs are with actual retrieval effectiveness,
and, crucially, how useful they are in predicting the most effective
queries.

3.1 Data and Materials
The CLEF 2017 TAR collection was used [10]. This collection con-
sists of 50 topics, where each topic is based on a diagnostic test
accuracy systematic review. Each topic contains the title of the
systematic review (which we have used as the query for the QPP

task, and the seed query for the QVPP task), the (Boolean) query
used to retrieve citations in the systematic review, and a list of re-
trieved PubMed document identifiers (associated with relevant and
non-relevant citations). We indexed a subset of 198,366 PubMed1
citations with Lucene 6.2 using the publicly available Lucene4IR
toolkit[2]2, where we employed Porter stemming and stopping. In
line with CLEF TAR protocol, the subset of PubMed was obtained
by retaining only citations that appear in the qrels of the TAR col-
lection. For retrieval, we used language modelling with Dirichlet
smoothing. In line with other studies on QPP, we set the smoothing
parameter to µ = 1, 000 [6, 7, 18, 21]. Our retrieval experiments
were performed using a field comprising a concatenation of the
title, abstract, authors, and journal. For our experiments, we used
MAP (as in previous work on QPP [6, 7, 18, 21]) as the evaluation
metric. This aligns with the goals of the medical researchers who
value precision and recall, and was used as part of the CLEF 2017
TAR track [10].

3.2 Query Performance Predictors
Our methodology uses the following pre-retrieval QPPs: Query
Length (QL) [15], Term Length (TL) [9],Character Length (CL);
which we define as: CL =

∑
w ∈Q |w |, Inverse Document Fre-

quency [5] (we use the sum (SIDF), average (AIDF), max (MIDF),
and standard deviation (SDIDF) of each of the terms in the query for
our id f -based predictors as has been common practice in previous
work [5, 8, 25]), Inverse Collection Term Frequency (ICTF) [14],
Query Scope (QS – ω) [17], Simplified Clarity Score (SCS) [9],
and Collection Query Similarity [25]. Our methodology also
uses the following post-retrieval QPPs: Weighted Information
Gain (WIG) [26], Weighted Expansion Gain (WEG) [12], Nor-
malised Query Commitment (NQC) [21], and Clarity Score
(CS) [5]. The pre- and post-predictors have been chosen due to their
common usage in the already established QPP task.

3.3 Query Variations
For each topic, the topic title was used as a seed query to generate
query variations. We build upon the approach described by Az-
zopardi [1] whereby variations are generated by a process of query
reduction. First, stop words were removed to create a query of n
terms. Given this query of n terms, queries of lengths n − i were
extracted, where i = 1 to i = n − 3 (i.e. queries between 3 and n
terms in length). We then used stratified sampling to randomly
select a subset of the queries, based on the lengths. 50 queries per
topic were then randomly sampled. We did not control for term
redundancy between selected queries. Five of the topics were ex-
cluded because the title was less than 4 terms, and thus did not
enable the generation of more than 50 queries of length 3 or more.
The distribution of the length of variations across topics is reported
in Figure 1a (ordered by seed query performance), while the distri-
bution of the performance (AP) of the query variations over topics
is reported in Figure 1b. In the latter, we also report the AP of the
seed queries for comparison. This figure shows that for each topic,
there is generally at least one query variation that outperforms the
seed query. This motivates the task of QVPP.

1Downloaded on the 23rd of August 2017 comprising 26,759,399 citations.
2https://github.com/lucene4ir/lucene4ir
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(a) Distribution of query lengths across topics.
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(b) Distribution of AP for query variations (boxplots) and seed
queries (in blue) across topics.
Figure 1: Distribution of query lengths and AP scores over
each topic. Both sub figures are ordered by AP score.

3.4 Experimental Procedure
For each topic, query variations were issued to the retrieval system,
their AP recorded, and the QPPs computed. To evaluate the QPP
task and subtask S1 for the QVPP, the linear correlation (r ) between
predictors and AP was computed using Pearson’s correlation, as in
previous work [6, 9, 12, 18, 21]. Pearson’s r measures the strength
of the linear relationship between two variables. We then averaged
over all topics and report both the mean and standard deviation.
We further computed Kendall’s and AP Correlation. Kendall’s τ
uses pairwise comparisons to determine how different one ranked
list is from another. We use the τb variant which accounts for ties
in the ranking. AP Correlation (τap ) [24] is conceptually similar
to Kendall’s τ , however it assigns more importance to rank dis-
agreement at the top of the list. As we are interested in identifying
orderings for high performing queries, τap provides a more robust
indication than τ . In this work, we use the τap,b variant which
accounts for ties in the ranking [23]. The inclusion of τb and τap,b
in our analysis is used to demonstrate the ability of a predictor to
rank queries for the QVPP tasks — and in particular, to rank effec-
tive queries at the top (τap,b ). For QVPPs subtask S2, we recorded
the number of topics for which the predictor identified a variation
with a higher AP than the seed query. For subtask (S3), we selected
the query variation that is predicted to be the most effective for
each topic. Given the “best” query variation for each topic, we then
computed the AP and compared it against the seed query.

4 RESULTS AND DISCUSSION
4.1 Query Performance Prediction
We first describe the effectiveness of the predictors in the traditional
QPP task; that is, the task of predicting the performance of a single
query for a topic. The results of this task are reported in Table 1.
Most predictors exhibited a weak positive or negative correlation,
while TL exhibited the strongest correlation for all three correlation
measures. These results indicate that in the context of predicting
the effectiveness of queries for systematic reviews, general purpose
QPPs such as the ones used in this work are not sufficient.

4.2 Query Variation Performance Prediction
Next, we investigate the QVPP task. For subtask S1, we examine
the correlation values reported in Table 1.

QPP QPP Task QVPP Task
r τb τap,b Mean r Mean τb Mean τap,b

AICTF -0.092 -0.108 -0.106 0.208 (±0.320) 0.157 (±0.226) 0.072 (±0.206)
AIDF -0.082 -0.075 -0.086 0.231 (±0.308) 0.168 (±0.214) 0.070 (±0.199)
AQL 0.162 0.088 0.122 0.323 (±0.249) 0.274 (±0.134) 0.151 (±0.144)
ASCQ -0.126 -0.139 -0.143 0.216 (±0.287) 0.145 (±0.194) 0.045 (±0.193)
CL 0.161 0.088 0.120 0.323 (±0.249) 0.274 (±0.134) 0.152 (±0.144)
CS -0.065 -0.054 -0.058 0.309 (±0.356) 0.234 (±0.294) 0.139 (±0.274)
MIDF 0.053 0.060 0.002 0.266 (±0.399) 0.236 (±0.321) -0.098 (±0.293)
MSCQ 0.079 0.074 0.075 0.365 (±0.377) 0.314 (±0.318) -0.026 (±0.291)
NQC -0.128 -0.149 -0.105 0.180 (±0.398) 0.147 (±0.312) 0.078 (±0.268)
QS -0.080 -0.109 -0.049 -0.091 (±0.206) -0.109 (±0.145) -0.081 (±0.138)
SCS -0.135 -0.162 -0.141 -0.029 (±0.311) -0.030 (±0.226) -0.039 (±0.192)
SDIDF 0.027 0.016 -0.021 0.382 (±0.319) 0.309 (±0.170) 0.175 (±0.170)
SSCQ 0.149 0.065 0.122 0.360 (±0.272) 0.295 (±0.149) 0.167 (±0.171)
TL 0.178 0.118 0.126 0.321 (±0.256) 0.284 (±0.145) 0.101 (±0.175)
WEG -0.021 -0.016 0.012 0.375 (±0.338) 0.291 (±0.249) 0.173 (±0.241)
WIG -0.107 -0.095 -0.055 0.364 (±0.375) 0.287 (±0.289) 0.173 (±0.267)

Table 1: Results from the QPP and QVPP tasks. The r and
τap,b is reported for the QPP task, and the mean r and τap,b
for each query variation in each topic is reported for the
QVPP task, as well as the standard deviation.

• SDIDF exhibited the strongest r and τap,b . We further note that
WIG, WEG, MSCQ and SSCQ also exhibited similar correlations
in terms of r and τb compared to SFDIDF.

• MSCQ showed very weak τap,b correlation, suggesting that the
query variations predicted at the top of the ranking are not the
most effective.

For subtasks S2 and S3, Table 2 reports the effectiveness of using
predictors to select a query variation (the one predicted to be the
most effective) for each topic in place of the seed query.
• SDIDF was not as effective compared to other predictors at iden-
tifying better query variations and was only able to correctly
identify the best variation for one of the 45 topics.

• WEG, WIG, CS, and NQC (all post-retrieval predictors) correctly
identified the best variations for more than two topics.

• On average, QPPs were not only unable to predict the best possi-
ble query variation (most performed worse than a random rank-
ing, reported in the table for comparison), but were consistently
unable to select variations that outperformed the seed query.

Finally, we examine the retrieval effectiveness (MAP) of the best
query variations, as selected by each predictor (Table 2). The MAP
of the seed queries was 0.180 and theMAP of the best possible query
variations (“oracle”) was 0.235 (statistical significant improvement
over seed query: two-tailed paired t-test p = 1.90e − 05). We found
that none of the predictors selected variations which improved over
the seed query, and all predictors except WEG were statistically
significantly worse (p < 0.05). Nevertheless, we found that most
predictors outperformed the random ranking and were also able to
select query variations that were better than the median variations.

4.3 Comparison of QPP and QVPP
As reported in Table 1, predicting the performance across topics
(QPP) appears more difficult than within topics (QVPP): in fact,
stronger correlations are observed for the QVPP task than for the
QPP task, though there is high variance across topics. Comparing
the QPP task to the QVPP task, predictors in the query length fam-
ily (i.e. TL, AQL, and CL) exhibit the strongest positive correlations
in both the QPP and QVPP tasks. Additionally, these QPPs are able
to identify a higher number of queries that are more effective than
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both the seed query and median query baseline. TL exhibits the
strongest correlation in the QPP task and is able to identify the
highest number of query variations that are better than the seed.
SCS and QS does not have strong correlations in the QPP task or the
QVPP task; and the results of the QVPP task reflect the difficulty
these predictors have in identifying better query variations. It is
surprising to see predictors that exhibit the strongest relative corre-
lations in the QVPP versus the QPP task perform worse when used
to identify better variations. As a result, it is unclear what specific
features contribute to identifying more effective query variations,
and how these features can be applied to the Boolean queries used
in medical systematic reviews.

5 CONCLUSION AND FUTUREWORK
While most predictors tend to be weakly correlated with MAP, the
predictors themselves are poor at identifying the most effective
query variations. The predictor that is most correlated with retrieval
effectiveness is only able to predict the best query variation for
one out of 45 topics. Four predictors (WEG, CS, WIG and NQC)
are able to select more than two queries, with WEG able to select
four. However the best predictors are only slightly better than a
random ranking of query variations. Additionally, for the task of
identifying better queries, there does not appear to be a strong
relationship between r , τb , or τap,b and the ability to select queries
better than the baselines. We conclude by conjecturing that these
popular predictors from the literature are insufficient in predicting
query effectiveness of query variations, particularly within the
context of ranking and selecting text queries for searching medical
literature for systematic reviews.

Future work is required in this area to facilitate more effective
query selection using predictors. First, we highlight the need for
domain-specific query performance predictors that consider fea-
tures relating to systematic reviews and the retrieval of relevant

QPP Better Seed
Predictions

Better Median
Predictions

Best
Predictions MAP

Random 12 13 2 0.128 1.51e−04

Median 12 — 0 0.143 6.48e−06

AICTF 14 12 2 0.128 8.80e−04

AIDF 11 13 0 0.141 3.81e−04

AQL 19 23 0 0.156 8.77e−03

ASCQ 7 11 1 0.122 3.03e−05

CL 19 23 0 0.156 8.77e−03

CS 17 22 3 0.154 3.05e−02

MIDF 9 11 0 0.111 2.62e−03

MSCQ 12 14 1 0.147 3.13e−02

NQC 12 18 3 0.146 4.63e−03

QS 9 13 0 0.123 1.49e−05

SCS 13 11 2 0.131 1.27e−03

SDIDF 18 29 1 0.1692.39e−02

SSCQ 19 31 1 0.1692.74e−02

TL 21 29 1 0.167 3.22e−02

WEG 15 22 4 0.163 7.12e−02

WIG 12 19 3 0.157 2.50e−02

Table 2: Results for QVPP tasks S2 (“better query”) and S3
(“best query”). For S2,we also report for howmany topics the
variation was better than the median variation. For S3, we
also report the MAP of the query variation ranked highest
by each predictor. Statistical significance (two-tailed paired
t-test) between the MAP values of seed queries and that of
the highest ranked variation is reported in superscript.

medical literature, e.g., the PICO framework, which is already used
effectively to enhance retrieval in this domain [4, 19]. Secondly,
this work can be extended to study the complex Boolean queries
used in systematic reviews to determine how query performance
predictors can be adopted. Furthermore, this investigation can also
be expanded to query variations outside of the systematic review
domain, e.g., [3, 27]. This initial work provides the foundations
for the QVPP task and contextualises it for systematic reviews,
where the outcomes have the potential for saving hundreds and
even thousands of hours of search effort if more effective queries
exist and can be recommended.
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